INDIAN INSTITUTE OF ENGINEERING SCIENCE AND TECHNOLOGY(HEST), SHIBPUR

Department of Earth Sciences

Syllabus of M. Sc. In Applied Geology

(Revised as per NEP,2020 and Approved by the BOAC, Department of Earth Sciences, HEST, Shibpur)

2025

	COURSE STRUCTURE FOR M. Sc. IN Applied Geology									
First Sen	<u>iester</u>									
Sl. No.	Туре	Course Name	Course	Class Load/Week			Credit	Class load/	Marks	
			coue	L	T	P		week		
1	PC	Igneous Petrology & Phase Equilibria	ES5101N	4	0	0	4	4	100	
2	PC	Mineralogy & Geochemistry	ES5102N	4	0	0	4	4	100	
3	PC	Structural Geology & Tectonics	ES5103N	4	0	0	4	4	100	
4	PSE	Mathematical Geology Marine Geology	ES5121N, ES5122N	3	0	0	3	3	100	
5	OE	Introduction to Earth materials/ Earth Surface Processes and Structures	ES5161N, ES5162N	3	0	0	3	3	100	
		Theory Sub-total		18	0	0	18	18	500	
6	PC	Structural Geology Practical	ES5171N	0	0	3	2	3	50	
7	PC	Mineralogy and Igneous Petrology practical	ES5172N	0	0	3	2	3	50	
		Practical Sub-total		0	0	6	4	6	100	
		First Semester Total		18	0	6	22	24	600	

Second Semester									
Sl. No.	Туре	Course Name	Course code	Cl Load L	ass /We	ek P	Credit	Class load/ week	Marks
1	PC	Sedimentology & Basin Analysis	ES5201N	4	0	0	4	4	100
2	PC	Metamorphic Petrology & Thermodynamics	ES5202N	4	0	0	4	4	100
3	PC	Principles of Stratigraphy & Indian Stratigraphy	ES5203N	4	0	0	4	4	100
4	PSE	Geodynamics Geomorphology	ES5221N, ES5222N	3	0	0	3	3	100
5	OE	Life through Ages/ Natural Resources and Energy	ES5261N, ES5262N	3	0	0	3	3	100
		Theory Sub-total		18	0	0	18	18	500
6	PC	Metamorphic Petrology and Sedimentology Practical	ES5271N	0	0	3	2	3	50
7	PC	Fieldwork	ES5272N	0	0	0	2	0	50
		Practical Sub-total		0	0	3	4	3	100
8	P	Term-paper	ES5291N	0	0	4	2	4	50
9	O	Term PaperViva Voce	ES5292N	0	0	0	2	0	50
		Term Paper Sub-total		0	0	4	4	4	100
		Second Semester Total		18	0	7	26	25	700

Third Semest	er								
Sl. Type		Course Name	Course code		Class d/W		Credit	Class load/	Marks
110.			couc	L	T	P		week	
1	PC	Palaeontology & Mass Extinction	ES6101N	4	0	0	4	4	100
2	PC	Ore Geology & Fuel Geology	ES6102N	4	0	0	4	4	100
3	PC	Introduction to extraction of Critical Minerals	ES6103N	4	0	0	4	4	100
		Theory Sub-total		12	0	0	12	12	300
4	PC	Ore Geology + Palaeontology practical	ES6171N	0	0	3	2	3	50
		Practical Sub-total		0	0	3	2	3	50
6	Р	M. Sc. Thesis Part-I (Progress report)	ES6191N	0	0	18	6	12	100
7	0	Thesis progress report Seminar and Viva voce	ES6192N	0	0	0	2	0	100
		M. Sc. Thesis Sub-total		0	0	18	8	12	200
8	I	Internship	ES6193N				2		50
		Third Semester Total		12	0	21	24	27	600

Fourth Semester									
Sl. No. Type		Course Name	Course code	Loa	1	eek	Credit	Class load/	Marks
	VAC			L	T	P	3	week	100
1	PC	GIS & Remote Sensing and Applictaion of AI-ML in Geosciences	ES6201N	4	0	0	4	4	100
2	PC	Hydrogeology & Exploration Geophysics	ES6202N	4	0	0	4	4	100
		Theory Sub-total		6	1	0	11	8	300
3	P	M.Sc Thesis Part-II	ES6291N	0	0	16	8	16	200
4	О	Thesis Seminar and Viva-voce	ES6292N	0	0	0	4	0	100
		M. Sc. Thesis Sub-total		0	0	16	12	16	300
		Fourth Semester Total		6	1	16	23	24	600

Total	05	2500
course)3	2300

Type of Course

Basic Science Course (BSC)

Engineering Science Course (ESC)

Humanities and Social Sciences Course (HSC)

Program Core Courses (PC)

Program Specific Elective Course (PSE)

Open Electives (OE)

Value Added Course (VAC)

Project (P)

Internship (I)

Detailed Course Content

FIRST SEMESTER

Course Code	ES5101N	Course	Igneous Petrology and	Course	PC	L	Т	P
Course Coue	ESSIUIN	Name	Phase Equilibria	Category	rc	4	0	0

Pre- requisite Courses	BSc with Geology/ Earth Sciences as Major in three-year UG Course	Co-requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department		Earth S	Sciences	Data Book / Codes/Standards	Nil

Course	The objective focuses on ideas about various aspects of igneous rocks which are
Objective	controlled by chemical and physical properties of magmas and their surroundings. This
	course will help in the understanding of melt generation and crystallization mechanisms,
	diverse rock types and their relation with the tectonic settings.

Module	Syllabus	Duration (class-hour)	Module outcome
1	Differentiation of the Earth, major structural units of the Earth, magmatism in relation to plate setting. Composition of the upper mantle, energy and mantle heat engine, gravity, pressure and geobaric gradient, viscosity of melts chemical diffusion, heat diffusion, nucleation and crystal growth, vesiculation and fragmentation of magma, igneous rock series.	8	Students will analyze the compositional stratification of Earth's layers and relate magmatic activity to tectonic settings (e.g., mid-ocean ridges, subduction zones). They will evaluate mantle melting processes using heat flow, pressure gradients, and viscosity to interpret magma generation mechanisms.
2	Classification of magmatic rocks - based on fabric, field relations, mineralogical and modal, and whole rock compositions, IUGS classification of plutonic, hypabyssal and volcanic rocks.	4	Learners will classify igneous rocks based on IUGS criteria (mineralogical, modal, and geochemical compositions) and correlate rock types (e.g., basalt, granite) with their tectonic environments. They will distinguish plutonic, hypabyssal, and volcanic textures.
3	Gibbs Phase Rule and Cryoscopic Equation: application to magmatic crystallization. Magmatic phase equilibria: binary, ternary and quaternary systems involving	8	Students will apply Gibbs Phase Rule to binary/ternary systems, modeling equilibrium vs. fractional crystallization. They will interpret phase diagrams

4	congruent and incongruent melting, continuous and discontinuous solid solutions, polymorphism, liquid immiscibility, equilibrium crystallization and fractional crystallization, equilibrium partial melting and fractional partial melting. Cooling behaviour, convection, crystal settling and floating, diffusion, Soret effect, flow and diapirism. Simple numerical problems. Trace element fractionation in magmas: equilibrium crystallization and Rayleigh fractionation, REE patterns of common basalts.	4	(e.g., Bowen's Reaction Series) to predict mineral assemblages and reaction textures (e.g., peritectic melting). Learners will quantify cooling rates using diffusion models and convection dynamics. They will calculate trace element distributions (e.g., REE patterns) to assess magma differentiation processes (e.g., Rayleigh fractionation).
5	Low-pressure fractional crystallization of basaltic magmas: thermal barrier between tholeitic and alkaline trends, generation of common crustal-level igneous rocks. Melt composition, mantle material, partial melting of the peridotite mantle and magma generation, alkaline magma generation, magma generation in continental crust, differentiation (open and closed systems) and assimilation, hybrid magmas, magma storage, ascent and emplacement, field relations of intrusions.	8	Students will model tholeiitic vs. alkaline magma differentiation trends and evaluate crustal assimilation effects. They will reconstruct mantle partial melting scenarios using geochemical datasets and experimental petrology.
6	Layered mafic complexes: Structural, petrographic and chemical characters, origin of cumulates and layering.	4	Learners will interpret cumulate textures and layering in intrusions (e.g., Bushveld Complex) to deduce crystallization histories and magma chamber dynamics.
7	Magmatic evolution in different plate tectonic settings: Mid-oceanic ridge basalts, ocean floor basalts, ophiolites, intra-plate oceanic island basalts, andesites and calc-alkaline volcanic rocks in plate convergences, continental flood basalts.	4	Students will correlate magma compositions (MORBs, arc andesites, kimberlites) with plate boundary processes. They will critique geodynamic models for flood basalts and oceanic island volcanism.
8	Granites and granitic rocks: Review of the structural-tectonic and petrographic —chemical varieties. Primary magmatic, anatectic and metasomatic processes in different settings. Isotopic-geochemical and geochronological signatures of granites. Simple numerical problems.	4	Learners will discriminate primary magmatic, anatectic, and metasomatic granites using isotopic/geochemical signatures. They will assess carbonatite/kimberlite genesis in rift and hotspot settings.

	petrology and phase equilibria: geophysical and geochemical constraints partial melting, origin of primary basaltic magmas		mantle melting conditions using experimental phase equilibria.
10	Ultramafic rocks: Structure, petrography and chemistry in relation to tectonic settings. Upper mantle	4	Learners will relate ultramafic xenoliths to mantle rheology and metasomatism. They will apply geo-thermo-barometry to estimate
9	Alkaline rocks, carbonatites and kimberlites: brief review of the mode of occurrence, petrography, chemistry and genetic processes Precambrian magmatism: petrology of komatiites and massif-type anorthosites—brief introduction to problems of heat flow, plate movements and place-time constrains in the Precambrian	4	Students will evaluate komatiite petrogenesis in Archean thermal regimes and contrast them with modern analogs. They will analyze massif-type anorthosites as probes of early crustal processes.

Upon completion, students will demonstrate proficiency in analyzing physicochemical processes governing magma generation, differentiation, and crystallization using phase diagrams and thermodynamic principles. They will classify igneous rocks through mineralogical, geochemical, and textural criteria, linking them to tectonic environments. Learners will evaluate magmatic processes (e.g., partial melting, fractional crystallization) via petrogenetic models and experimental datasets, apply geo-thermo-barometry to interpret crystallization histories, and critically assess research to infer crust-mantle dynamics. This prepares them for advanced research in igneous systems and geodynamic reconstructions.

- 1. Igneous Petrology by Anthony Hall. .
- 2. Introduction to Igneous and Metamorphic Petrology by John D. Winter.
- 3. Igneous and Metamorphic Petrology by Myron G. Best.
- 4. Principles of Igneous and Metamorphic Petrology by Anthony R. Philpotts and Ague
- 5. Using Geochemical Data: Evaluation, Presentation, Interpretation, Hugh Rollinson.
- 6. Igneous and Metamorphic Rocks under the Microscope: Classification, textures, microstructures and mineral preferred orientation by D. Shelley.

Course Code	ES5102N	Course	Mineralogy and	Course	PC	L	T	P	
Course Code	E33102N	Name	Geochemistry	Category	rc	4	0	0	

Pre- requisite Courses	BSc with Geology/ Earth Sciences as Major in three-year UG Course	Co-requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department		Earth Scien	ices	Data Book / Codes/Standards	Nil

_	
Course	The course aims to provide knowledge on the characteristics of major rock forming
Objective	mineral groups, their crystal symmetry, crystallography and atomic structure. A
	detailed study on their formation environments and associations of rock-forming
	minerals will be provided along with techniques of mineral characterization. The
	course will further give an insight on how chemical principles are used to explain
	the mechanisms that control the large geological systems such as the Earth's
	mantle, crust, ocean and atmosphere and the formation of the solar system.

Module	Syllabus	Duration (class-hour)	Module outcome
1	Mineralogy: Rock Forming Minerals: their distribution; importance; some important crystals. Chemical features in silicate minerals, coordination, substitution, omission Solid Solution, order-disorder etc.	4	Students will classify major rock-forming minerals by crystal chemistry, structural features, and substitution mechanisms, and explain mineral stability in geologic environments.
2	Crystal Field Theory: its application in distribution of transition elements in minerals and rocks; bonding in minerals.	2	Learners will apply crystal field theory to explain coloration, magnetic behavior, and trace element incorporation in minerals.
3	Calculation of atomic ratios from analysis	2	Students will compute atomic proportions from mineral analyses and interpret compositional trends in silicate systems.
4	Alkali feldspar: classification; optic relation; perthite solvus; structure of feldspar; aluminium silicon ratio; order in feldspar; ordering paths; estimate of the degree of order. Polymorphism of NaAlSi ₃ O ₈ , structural states of plagioclase	4	Learners will analyze feldspar polymorphism, order-disorder phenomena, and interpret phase transitions using optical and structural data.
5	Structure of Nepheline, constitution of Nepheline and its significance	2	Students will evaluate the constitution of nepheline and

			its implications in silica- undersaturated igneous
6	Pyroxene group: classification: atomic	2	systems Learners will classify
	structure; optical properties; pyroxene	_	pyroxenes based on optical
	inversion; experimental observations;		and crystallographic properties
	exsolution; Fe-Mg order		and interpret inversion and
			exsolution phenomena
7	Olivine group: classification; structure;	2	Students will assess olivine
	optical properties; paragenesis; Olivine-		structures, Fe-Mg ordering,
	Spinel transition and its significance		and paragenesis, including
			olivine-spinel transitions
			under mantle conditions.
8	Amphibole group: classification; structure;	2	Learners will compare
	comparison with pyroxene		amphiboles and pyroxenes
	1 17		structurally and interpret
			amphibole stability in
			metamorphic and igneous
			rocks
9	X-ray crystallography: Bragg's law; single	4	Students will apply Bragg's
	crystal and powder methods; principle and		Law and x-ray methods to
	application in determination of crystal		characterize mineral
	structure. Defects in minerals, phase		structures, assess defects, and
	relations in major groups of		interpret phase relations.
	minerals.		
10	Ore mineralogy: mineralogy of important	4	Learners will describe ore
	ores of the following elements; iron,		minerals of economic
	manganese, titanium, chromium, tin,		elements and interpret textures
	tungsten, copper, lead, zinc, nickel,		to infer ore genesis processes
	uranium, thorium. Texture of the ore		
	minerals and their interpretations		
11	Concept of symmetry, point group, lattice	2	Students will utilize symmetry
	and space group, principles of crystal		and crystallographic concepts
	chemistry, principles of optical and x-ray		to classify minerals and
	mineralogy		predict atomic arrangements
12	Geochemistry:	4	Learners will explain
	Origin and abundance of elements in the		elemental behavior using
	solar system and Earth; Chemical		periodic properties and assess
	composition and properties of atmosphere,		chemical composition of Earth
	hydrosphere and lithosphere; Geochemical		systems.
	cycles; Atomic structures and properties of		
	elements in the periodic table with special		
	reference to major, minor and trace		
	elements (transition, LILE, HFSE)		
	including rare earth elements; Geochemical		
	classification of elements		
13	Laws of Thermodynamics; Concepts of	6	Students will apply
	Free Energy, Activity, Fugacity and		thermodynamic principles
	Equilibrium Constant, Thermodynamics of		(Gibbs Free Energy, Activity,
	Ideal, Non-Ideal and Dilute Solutions.		

	Element Partitioning In Minerals/Rock		Fugacity) to model mineral
	Formation and Concept of Distribution of		stability and equilibria
	Coefficients.		
14	Radioactive Isotope: Radioactive decay	4	Learners will evaluate
	schemes. Growth of Daughter Isotopes and		radioactive decay schemes and
	Radiometric Dating. Geochronology—		apply isotope systematics to
	Methods		date geologic materials.
15	Stable isotopes: Nature, Abundance,	4	Students will interpret stable
	Fractionation, Evolution and Fluid		isotope data to assess fluid
	interactions.		interactions, weathering,
			metamorphism, and
			environmental conditions
16	Concepts of P-T-X, Eh-Ph Diagrams and	4	Students will interpret stable
	Mineral Stability; Geochemical processes		isotope data to assess fluid
	involved in rock weathering and soil		interactions, weathering,
	formation; Metamorphism as a		metamorphism, and
	geochemical phenomenon.		environmental conditions
	Mineral/Mineral Assemblages as 'Sensors'		
	Of Ambient Environments.		
Total		52	

Upon completion, students will be able to identify and classify major rock-forming minerals based on crystallographic symmetry, atomic structure, and physicochemical properties. They will analyze mineral formation environments, associations, and their role in geological processes using advanced characterization techniques (e.g., XRD, SEM-EDS). Learners will apply geochemical principles to interpret elemental distribution, isotopic systems, and chemical processes governing Earth's mantle, crust, oceans, atmosphere, and solar system evolution. This equips them to integrate mineralogical and geochemical data for research in petrogenesis, environmental systems, and planetary science.

- 1. Rock-Forming minerals, Deer, W.A., Howie, R.A. & Zusaman.
- 2. Introduction to Mineralogy by William D. Nesse.
- 3. Manual of Mineralogy by James D. Dana, Cornelius S. Hurlbut, and Cornelis Klein.
- 4. Using Geochemical Data: Evaluation, Presentation and Interpretation by Hugh Rollinson.
- **5.** Principles of Geochemistry, 4th edition by B Mason & C. B Moore.
- 6. Geochemistry: An Introduction by Albrecht W. Hofmann and Francis Albarède.
- 7. Principles and Applications of Geochemistry by Gunter Faure.

Course Code	ES5103N	Course	Structural	Course Category	DC.	L	T	P	
Course Coue	ESSIUSIN	Name	Geology and Tectonics		rc	4	0	0	

Pre- requisite Courses	BSc with Geology/ Earth Sciences as Major in three-year UG Course	Co-requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department		Earth Sc	iences	Data Book / Codes/Standards	Nil

Course Objective

Tectonic activity of the Earth's surface is the external manifestation of internal dynamism of the Earth. Enormous tectonic forces are developed due to this tectonic activity. These trigger deformation of rocks which subsequently lead to the development of different complex structures. The present course will help the students to understand the deformation-mechanisms of rocks through geometric, kinematic, dynamic analysis of rock structures and their relation to different tectonic environments

Module	Syllabus	Duration	Module outcome
		(class-	
		hour)	~
1	Structural Geology:	3	Students will learn stress
	Stress: Definition, Stress at a point,		components using matrices,
	component of stress matrix, principal axes		construct Mohr circles, and
	of stress, stress ellipsoid, stress on planes		determine principal stresses on
	inclined to principal axes of stress, Mohr		inclined planes to analyze rock
	circle diagram of		deformation conditions
	tress.		
2	Strain: Types and measurement of strain,	4	Learners will differentiate
	strain ellipse and ellipsoid, principal axes		between rotational/irrotational
	of strain, rotational and irrotational		deformation, quantify strain
	deformation, flattening, constriction and		using ellipsoids, and model
	plane strain, pure shear and simple shear,		shortening/extension zones in
	concept of zones of shortening and		pure and simple shear regimes
	extension in pure and simple shear.		
3	Progressive Deformation: Concept of	3	Students will distinguish finite
	infinitesimal and finite strain, co-axial and		vs. infinitesimal strain, trace
	non-coaxial deformation, particle paths for		particle paths in combined shear
	pure and simple shear and combined pure		systems, and predict rigid
	and simple shears. Rotation of rigid		inclusion rotation during
	spherical and ellipsoid inclusion		deformation.
4	Behavior of Rocks under Stress: Brittle,	4	Learners will classify
	ductile and plastic deformation with stress-		brittle/ductile/plastic
	strain relation, creep deformation.		deformation, correlate stress-
	Rheology. Classification of Rheology. How		strain curves with creep
	extrinsic parameters (Pressure,		mechanisms, and evaluate

	Temperature etc.) influence Rheology. Rheology in Earth Science, Constitutive equation of Rheology, Rheological models, complex rheology		pressure/temperature impacts on rock rheology.
5	Superposed Folds: Fold interference in a single deformation, types of superposed fold, Ramsay's classification of fold interference [pattern, superposed folding depending on the mechanism of late fold and early and late folds, methods of geometrical analysis of superposed folds in mesoscopic and macroscopic scales.	5	Students will identify various fold interference patterns, analyze superposed folding mechanisms, and reconstruct deformation histories at multiple scales.
6	Lineation: Types of lineation, use of lineation in structural geology, reorientation of early lineation in superposed deformation	3	Learners will categorize lineation types, utilize them as structural indicators, and model reorientation in polyphase deformation settings.
7	Cleavage: Nomenclature, geometrical relation with folds, use of axial plane cleavage in geometrical/structural analysis, origin of axial plane cleavage, problem concerning the origin of cleavage	3	Students will relate cleavage geometry to folds, learn structural analysis, and evaluate genetic models for cleavage formation.
8	Boudinage: Significance of boudin shapes, geometrical relation with fold, origin of boudinage	3	Learners will interpret boudin shapes as strain markers, correlate boudinage with regional structures.
9	Shear zone: Brittle and ductile shear zones, structures in ductile shear zone, Mylonites-classification and textural features, shear sense indicator	4	Students will classify shear zones, identify shear textures, and use kinematic indicators to determine shear sense.
10	Mechanism of faulting: Anderson's theory of faulting, Halfner's analysis of faulting. Rejuvenation of earlier fault/weak zone by imposed later stress	4	Learners will apply various theory to fault genesis, and predict reactivation of preexisting weaknesses under new stress fields.
11	Tectonics: Mobile Belts and Craton	4	Students will learn tectonic evolution of mobile belts vs. cratons and evaluate their roles in continental assembly.
12	Concept of vertical and horizontal tectonics and its limitations	2	Learners will critique limitations of vertical/horizontal tectonic models using geophysical and structural evidence.
13	Concepts of plates, plate boundaries, pole of rotation, Euler's theorem, plate tectonics on sphere, plate tectonics and mountain building processes, plate tectonics at subduction zones, transform and divergent boundaries, evolution of plateau and rift	10	Students will apply Euler's theorem to plate motions, correlate boundary types (convergent/divergent/transform) with mountain building/rift formation, and reconstruct

valleys, study of plate tectonics	and India's	s drift history using
interior of the earth through sei	smology, hotspo	t/seismic data.
Driving forces of plate tectonic	s, origin of	
mantle plumes/hot spot and its	role on	
plate tectonics of the Indian pla	te, Drifting	
of the Indian sub-continent thro	ugh time	
Total	52	

Upon completion, students will analyze deformation mechanisms in rocks through geometric, kinematic, and dynamic approaches, interpreting structures like folds, faults, and shear zones. They will apply stress-strain models to assess rock behavior under tectonic forces and correlate structural patterns with plate boundary settings (e.g., convergent, divergent). Learners will utilize field techniques, cross-section balancing, and stereo-net analysis to reconstruct deformation histories. This equips them to evaluate tectonic processes shaping Earth's crust and contribute to applications in resource exploration, seismic hazard assessment, and geodynamic modeling.

- 1. Structural Geology—Fundamentals and Modern developments by S.K. Ghosh.
- 2. Folding and Fracturing of Rocks by J.G. Ramsay.
- 3. Structural Geology by H Fossen
- 4. An outline of Structural Geology by B.E. Hobbs, W.D. Means and P.F. Williams.
- 5. Structural analysis of Metamorphic tectonites by J.G. Turner and L. E. Weiss.
- 6. Use of stereographic projection in Structural Geology by F. C. Phillips.
- 7. Elasticity, Fracture and flow by J.C. Jaeger.
- 8. Structural Geology by Twiss and Moores
- 9. Rheology of the Earth by G. Ranalli, Allen and Unwin
- 10. Plate tectonics and crustal evolution, 3rd ed. Ed by K.C. Condie.
- 11. The Dynamic Earth by P.J. Willie

Course Code	ES5121N	Course	Mathematical	Course	PSE	L	T	P	
Course Code	ESSIZIN Nar	Name	Geology	Category	FSE	3	0	0	

Pre- requisite Courses	BSc with Geology/ Earth Sciences as Major in three-year UG Course	Co-requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department		Earth Science	es	Data Book / Codes/Standards	Nil

Course	Geology is an applied science and in different branches of geology mathematics is
Objective	used as a tool. Mathematical tools are required Mathematics has a wide application in
	Geology to understand geological processes too. Knowledge of mathematics is
	essential to conduct analog and numerical experiments in geology in order to match
	field observations. The course claims to help students to understand and develop an
	idea on the nature of geological and deformational processes precisely

Module	Syllabus	Duration (class-hour)	Module outcome
1	Solving equations graphically and analytically	7	Students will solve geological equations using graphical plots and algebraic methods, enabling quantitative modeling of Earth processes
2	Numerical differentiation and integration	7	Learners will compute derivatives/integrals of geological functions to analyze rates of change (e.g., sedimentation, cooling) and volumetric properties.
3	The concept of probability	3	Students will apply probability distributions to assess uncertainties in resource estimation and geospatial data.
4	Normal statistics, Universe, population, sample, random variable, Normal distribution, mean, mode, median, skewness, kurtosis, log-normal distribution, Multivariate distribution, 't'test, 'F'test, fiducian levels correlation, covariance, regression, linear and non-linear relationship	7	Learners will perform t-tests, F-tests, and regression to identify correlations in geochemical/petrological datasets and validate geological hypotheses.
5	Fundamentals of geostatistics, spatial and numerical variability of samples, variogram, estimation variance, geostatistical modeling, krigging	10	Students will model spatial variability of ore grades/reservoir properties using variograms and optimize resource estimation via kriging.

6	Some geosciences applications of	5	
	trigonometry		
Total		39	

	-
Course	Upon completion, students will apply mathematical tools to model geological
Outcome	processes such as deformation, fluid flow, and sedimentation. Learners will interpret
	spatial and temporal datasets. The course equips them to quantify uncertainties in
	geological models, integrate mathematical frameworks with geological principles,
	and solve complex problems in resource exploration, hazard assessment, and tectonic
	reconstructions.

Learning	1. Statistics and data analysis in Geology by J.C. Davis.
Resources	2. Statistical methods in geology by R.F. Cheeney.
	3. Essential maths for Geoscientists: An Introduction by Paul I. Palmer.
	4. Principles of mathematical geology by Andreĭ Borisovich Vistelius
	5. Handbook of Mathematical Geosciences edited by Daya Sagar, B.S., Cheng,
	Qiuming, Agterberg

Course Code	ES5122N	Course	Marina Gaalagy	Course	PSE	L	Т	P
	Name Name	Marine Geology	Category	rse 	3	0	0	

Pre- requisite Courses	BSc with Geology/ Earth Sciences as Major in three-year UG Course	Co-requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department		Earth Scien	ces	Data Book / Codes/Standards	Nil

Course	The study of Marine Geology is interdisciplinary. It is concerned with all aspects of
Objective	the oceans and seas, including their physical and chemical properties, origin,
	geology and life forms. The objective is to study all aspects of the ocean. It covers a
	wide range of topics, from marine life and ecosystems, to currents and waves, to the
	movement of sediments, to seafloor geology.

Module	Syllabus	Duration (class- hour)	Module outcome
1	Morphologic and tectonic domains of the ocean floor. Structure, composition and mechanism of the formation of oceanic crust. Hydrothermal vents.	5	Learners gain an understanding of the morphological and tectonic features of the ocean floor, the processes behind oceanic crust formation, and the significance of hydrothermal systems.
2	Ocean margins and their significance. Ocean Circulation, Coriolis effect and Ekman spiral, convergence, divergence and upwelling, El Nino. Indian Ocean Dipole Thermohaline circulation and oceanic conveyor belt. Formation of Bottom waters; major water masses of the world's oceans	5	Provides a comprehensive insight into physical oceanographic processes and their role in global climate regulation and water mass formation.
3	Oceanic sediments: Factors controlling the deposition and distribution of oceanic sediments; geochronology of oceanic sediments, diagenetic changes in oxic and anoxic environments	6	Enables interpretation of marine sedimentary records through an understanding of depositional controls, dating techniques, and diagenetic alterations in varied redox conditions.
4	Tectonic evolution of the ocean basins	4	Facilitates the reconstruction of ocean basin development and the geodynamic mechanisms underlying their structural evolution.
5	Mineral resources	5	Enhances the ability to assess marine mineral deposits with emphasis on genesis, distribution,

			and exploration strategies in oceanic settings.
6	Paleoceanography— Approaches to paleo-oceanographic reconstructions; various proxy indicators for palaeoceanographic interpretation.	6	Introduces methods and proxy systems used in paleoceanographic reconstructions to infer past marine and climatic conditions.
7	Reconstruction of monsoon variability by using marine proxy records	4	Develops the skill to utilize marine proxies in reconstructing past monsoon dynamics and evaluating long-term climatic variability.
8	Opening and closing of ocean gateways and their effect on circulation and climate during the Cenozoic. Sea level processes and Sea level changes	4	Encourages critical analysis of oceanic gateway dynamics and sea-level fluctuations, and their influence on global circulation and climate throughout the Cenozoic.
Total		39	

Course	Upon completion, students will assess seafloor geology, sediment transport, and
Outcome	marine ecosystems using geophysical tools (e.g., bathymetric mapping, core
	sampling) and geochemical data. They will interpret tectonic, oceanographic, and
	climatic processes shaping marine environments through seismic stratigraphy and
	palaeoceanographic proxies. Learners will integrate geological, biological, and
	chemical datasets to evaluate coastal dynamics, hydrocarbon reservoirs, and climate
	interactions. This prepares them for interdisciplinary research and roles in
	environmental management, resource exploration, and marine conservation.

Learning	1. Marine Geology by J Kennett
Resources	2. The Sea floor Spreading- An introduction to Marine Geology by Seibold, Eugen
	Berger and Wolfgang
	3. An Introduction to Marine Geology by M. J. Keen.
	4. Essentials of oceanography by Harold V. Thurman
	5. Descriptive Physical Oceanography: An Introduction by George L Pickard

Course Code	ES5161N	Course	Introduction to	Course	OE	L	Т	P	
Course Code	ESSIOIN	Name	Earth Materials	Category	OE	3	0	0	

Pre- requisite Courses	BSc with Geology/ Earth Sciences as Major in three-year UG Course	Co-requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department		Earth Scie	ences	Data Book / Codes/Standards	Nil

Course	The course is designed to give a brief idea of the material by which our mother
Objective	Earth is made up of. The main objective is to familiarize earth material within the
	students of different departments. The main aim is to build a base knowledge of
	minerals and rocks. Fundamentals of minerals and rock properties and their use will
	be an important part of the course other than identification

Module	Syllabus	Duration (class- hour)	Module outcome
1	Definition of Earth materials.	1	Understand Earth based on origin, and physical properties.
2	Earth as a planet in solar system. Gross features of the Earth. Brief idea about core, mantle, crust, hydrosphere, atmosphere, biosphere and elemental abundance in each constituent	2	Understand core, mantle, and crust, as well as the hydrosphere, atmosphere, and biosphere.
3	Layered structure of the Earth	2	Based on geophysical and geochemical evidence, and relate it to geological processes and Earth dynamics.
4	Earth's materials, minerals and rocks. Broad groups of minerals, oxides, sulphides, carbonates, sulphates and phosphates, silicates. Rocks as mineral assemblages, fabric, texture. Igneous rocks, acid, intermediate, mafic and ultramafic rocks. Sedimentary rocks, clastic and nonclastic. Metamorphic rocks, foliated, nonfoliated	14	Identify and classify Earth's materials Differentiate between major mineral groups Describe the concept of rocks as mineral assemblages, Classify igneous, metamorphic and sedimentary rock
5	Ore Mineralogy: Mineralogy of Important Ores of the Following Elements—Iron, Manganese, Titanium, Chromium, Tin, Tungsten, Copper, Lead, Zinc, Nickel, Uranium, Thorium. Texture	7	Identify and describe the mineralogy of important ore minerals Classify ore minerals Apply mineralogical characteristics and textures

	of the Ore Minerals and their Interpretations		
6	Study of rock forming minerals in hand specimen: identifications of common rock forming minerals and rocks	5	Identify common rock-forming minerals. Interpret basic geological characteristics of rocks and minerals. Develop observational and analytical skills essential for field and laboratory-based geological investigations
7	Physical Properties of minerals and rocks and their uses	8	Describe the physical properties of minerals and rock Evaluate the suitability of rocks and minerals for specific economic and engineering applications.
Total		39	

Upon completion, students will identify and classify minerals and rocks based on their physical, chemical, and structural properties. They will analyze formation processes, geological environments, and diagnostic features of common Earth materials. Learners will apply analytical techniques (e.g., hand lens, microscopy) to distinguish rock types and interpret their geological significance. The course equips them to correlate material characteristics with Earth's dynamic processes and human applications (e.g., construction, resource extraction), fostering interdisciplinary understanding of planetary composition and material science.

- 1. An introduction to the rock forming minerals by W. A. Deer, R. A. Howie and J. Zussman,
- 2. Optical mineralogy by P. K. Verma.
- 3. A Textbook of Geology by P. K. Mukherjee.
- 4. Fundamentals of Geology by Borges, Gwalani and Veena Rao.
- 5. Understanding Earth, 3rd edition, by Frank Press and Raymond Siever

Course Code	ES5162N	Course	Earth Surface	Course	OE	L	T	P	
Course Coue	E33102N	Name	Processes and Structures	Category	OE	3	0	0	

Pre- requisite Courses	BSc with Geology/ Earth Sciences as Major in three-year UG Course	Co- requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department		Earth S	ciences	Data Book / Codes/Standards	Nil

Course Objective	The course provides an overview of surfacial processes responsible on for the formation of different primary and secondary landforms, land forming processes, landscape evolution and how these depend on climate and tectonic regimes.

Module	Syllabus	Duration (class- hour)	Module outcome
1	Earth's energy balance, hydrological cycle, carbon cycle, heat transfer, topography and bathymetry	2	Interpret and relate Earth's energy and material cycles to environmental and geological processes.
2	Landforms in relation to climate, rock type, structure and tectonics	2	Identify and classify major landforms
3	Processes – weathering, pedogenesis, mass movement, erosion, transportation and deposition	5	Explain the processes of physical, chemical, and biological weathering and their role in landscape evolution. Analyze erosion processes caused by water, wind, ice, and gravity, and their effects on the Earth's surface. Interpret the interplay among exogenic processes in shaping terrestrial and marine landforms.
4	Geomorphic processes and landforms – fluvial, glacial, Aeolian, coastal and karst. River forms and processes – stream flow, stage discharge relationship; hydrographs and flood frequency analysis. Submarine relief	5	Students will be able to explain geomorphic processes and associated landforms. They will also understand and interpret the features of submarine relief.
5	Geomorphology and topographic analysis including DEM, Environmental change– causes, effects on processes and landforms. Extra-terrestrial geomorphology	5	Students will be able to analyze Earth's surface using topographic and DEM data, assess the impact of environmental changes on geomorphic processes and landforms, and compare geomorphological features on Earth with those on other planetary bodies.

6	Types of rocks and the environment in which they occur	1	Students will be able to identify different rock types and their
7	Rock cycle	2	environmental settings, explain the rock cycle
8	Introduction to rock deformation, causes for deformation, Ductile and Brittle behaviors of rock	4	Understand the causes and mechanisms of rock deformation, including ductile and brittle behaviors.
9	Structures of rock: Primary and Secondary structures	1	Students will be able to identify and interpret primary and secondary rock
10	Penetrative and Non-penetrative structures, fold, fault, lineation, foliation, shear zone	4	structures, distinguish between penetrative and non-penetrative features, and analyze structural elements
11	Mechanical properties of rocks and their controlling factors	3	Students will be able to understand the mechanical properties of rocks and
12	Structural data analysis: Solution of structural problem using graphical method Stereographic method, and π and β diagrams	5	their controlling factors, and apply graphical and stereographic methods, including π and β diagrams, to analyze and solve structural geology problems.
Total		39	

Course	Upon completion, students will analyze surficial processes (e.g., erosion, weathering,
Outcome	sediment transport) shaping primary and secondary landforms and evaluate their role
	in landscape evolution. They will interpret geomorphic features using field, remote
	sensing, and geochronological tools to deduce climatic and tectonic influences.
	Learners will model interactions between surface processes, lithology, and
	environmental drivers to predict landscape responses. This equips them to address
	challenges in geohazard mitigation, land-use planning, and paleoenvironmental
	reconstruction through interdisciplinary applications in geomorphology and Earth
	system science.

Learning	1. Earth Surface Processes and Landforms and Sediment Deposit by John Bridge
Resources	and Robert Demicco.
	2. Earth Surface Processes by P. A. Allen
	3. Geomorphology: A Systematic Analysis of Late Cenozoic Landforms, Pearson
	Education by A.L. Bloom.
	4. Global Geomorphology by M.A. Summerfield.
	5. Structural Geology—Fundamentals and Modern developments by S.K. Ghosh.
	6. Folding and Fracturing of Rocks by J.G. Ramsay.
	7. An outline of Structural Geology by B.E. Hobbs, W.D. Means and P. F. Williams.
	8. Engineering and general geology by Prabin Singh.

Course Code	ES5171N	Course	Structural	Course	PC	L	T	P	
Course Coue	E331/1N	Name	Geology Practical	Category	rc	0	0	3	

Pre- requisite Courses	BSc with Geology/ Earth Sciences as Major in three-year UG Course	Co-requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department		Earth Sci	ences	Data Book / Codes/Standards	Nil

Course Objective	Objective of the present study is to introduce various problems of structural geology and equip students to enable identification of various structures in field, processing structural data and making an integrated structural map

Module	Syllabus	Duration (class- hour)	Module outcome
1	Solution of structural problems of stereographic projection (in combination with other graphical methods when necessary) in the laboratory	25	Students will determine orientations of folds/faults using stereonets, resolving complex deformational histories from field data.
2	Structural interpretation of geological maps of superposed fold and complex structure related to fault and fold in the laboratory	14	Learners will reconstruct multi-phase deformation sequences by analyzing interference patterns and fault-fold relationships in geological maps
Total		39	1 2 2 1

Upon completion, students will demonstrate proficiency in identifying and analyzing geological structures (e.g., folds, faults, foliations) through field observations, stereonet projections, and structural datasets. They will apply techniques for processing and interpreting orientation data, constructing geological cross-sections, and integrating field measurements into structural maps. Learners will synthesize spatial relationships, kinematic indicators, and deformation histories to infer tectonic regimes. This equips them with practical skills for fieldwork, resource exploration, and geohazard assessment, preparing them to address complex structural challenges in academic and industry settings.

- 1. Barnes, J.W. and Lisle, R.J., 2013. Basic geological mapping. John Wiley & Sons.
- 2. Lisle, R.J., Brabham, P. and Barnes, J.W., 2011. Basic geological mapping. John Wiley
- 3. Compton, R.R. and Compton, R.R., 1985. Geology in the Field (p. 416). New York:
- 4. Ghosh, S.K., 2013. Structural geology: Fundamentals and modern developments.
- 5. Gokhale, N.W., 1991. a Manual of Problems in Structural Geology. CBS Pub..
- 6. Billi, A. and Fagereng, A., 2019. Problems and solutions in structural geology and tectonics (Vol. 5). Elsevier.

		Course	Mineralogy Practical and	Course		L	Т	P
Course Code	ES5172N	Name	Igneous Petrology and	Category	PC	0	0	3

Pre- requisite Courses	BSc with Geology/ Earth Sciences as Major in three-year UG Course	Co-requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department		Earth Scie	ences	Data Book / Codes/Standards	Nil

Course	Identification of minerals and igneous rocks is one of the main objectives of this course.
Objective	With a revision of each common specimens of minerals and rocks this course is designed
	to give and teach students advanced techniques of deduction of paragenesis of mineral
	evolution or crystallization. Thorough textural, compositional (presence of zoning) study
	of rocks and minerals under microscope will be taught with an aim to decipher the
	palaeo-tectonic model of magma generation and the formation of that particular mineral/
	rock

Module	Syllabus	Duration	
		(class-hour)	
2	Mineralogy Study of common rock forming minerals in light of their optical properties under microscope. Training in preparation of microscopic thin sections of rocks, etching and staining of rock samples.	20	Students will systematically identify and classify common rock-forming minerals thin sections using optical and textural relationships under petrological microscopes
1	Igneous Petrology ➤ Studies of petrography of common igneous rocks under microscope. ➤ Study of rock texture under microscope and their interpretation. ➤ Calculation of CIPW norms and preparation of variation diagrams.	19	Identifying igneous rock minerals students will further identify textural relationships interpreting crystallization histories and cooling conditions. They will calculate CIPW norms from bulk-rock geochemical data, correlating normative mineralogy with rock classification (IUGS) and tectonic settings
Total		39	

Upon completion, students will proficiently identify and classify igneous rocks and minerals using macroscopic and microscopic techniques, analyzing textures (e.g., zoning, reaction rims) and compositional variations. They will deduce crystallization sequences, magmatic evolution, and paragenetic relationships through petrographic analysis. Learners will interpret mineral assemblages and geochemical data to reconstruct paleotectonic settings and magma generation processes. The course equips them to apply geothermobarometry and phase equilibria principles for modeling magmatic conditions, preparing them for advanced research and industry roles in petrogenesis, mineral exploration, and tectonic reconstructions.

- 1. Deer, W.A., 1978. Rock-forming minerals. Geological Society of London.
- 2. Perkins, D., 1998. Mineralogy. Begin, 17, pp.17-38.
- 3. Dyar, M.D., Gunter, M.E. and Tasa, D., 2008. Mineralogy and optical mineralogy (p. 708). Chantilly, VA: Mineralogical Society of America.
- 4. Dana, J.D., 2022. Manual of mineralogy. BoD–Books on Demand.
- 5. RAITH, M.M. and RAASE, P., THIN SECTION MICROSCOPY.
- 6. Shelley, D., 1985. Optical mineralogy.
- 7. Nesse, W.D., 1987. Introduction to optical mineralogy. Applied Optics, 26(18), p.3739.
- 8. Gunter, M.E. and Light, I., 1992. Optical mineralogy. Encyclopedia of earth system science, 3, p.467.

Second Semester

Course Code	ES5201N	Course	Sedimentology	Course	PC	L	Т	P
Course Code	ES3201N	Name	and Basin Analysis	Category	PC	4	0	0

Pre- requisite Courses	BSc with Geology/ Earth Sciences as Major in three-year UG Course	Co-requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department		Earth Scie	ences	Data Book / Codes/Standards	Nil

Course Objective

Sedimentology is the study of sediments, particularly focusing on how it is produced, transported, and deposited. Sedimentary rocks illuminate many of the details of the Earth's history-- effects of sea level change, global climate, tectonic processes, and geochemical cycles. This course will cover basics of fluid flow and sediment transport, sedimentary textures and structures. It will provide an overview of facies analyses, modern and ancient depositional sedimentary environments, and the relationship of tectonics and sedimentation

Module	Syllabus	Duration (class-hour)	
1	Physical Sedimentology: sedimentary rocks & their types; clastic, volcaniclastic and chemical. Transportation and flow mechanisms. Dynamics of sediment transportation and deposition. Different types of flows, flow regimes. Sedimentary textures and structures and their genetic relation to the different parameters controlling the transportation and deposition	10	Learners develop a fundamental understanding of sediments, sedimentary rock types and their formation processes, along with the mechanics of sediment transport, flow regimes, genesis of sedimentary textures and structures.
2	Sedimentary Environments: Application of Walther's law, concept of facies, facies associations, facies sequence and transgression and regression Fluvial Systems: Alluvial Fan, Braided fluvial system and Meandering fluvial system, Architectural Elements Aeolian Environment: Aeolian facies attributes and associationsevaporites, ephemeral facies, draas, erg and their migration	20	Enables interpretation of depositional systems through the application of facies ananlysis, learning various facies of ancient sedimentary environments, Walther's Law, with emphasis on paleoenvironmental reconstruction across diverse sedimentary settings from continental to deep marine.

Course	Upon completion, students will analyze sedimentary processes (e.g., sediment					
Outcome	transport, fluid dynamics) and interpret depositional environments using facies					
	analysis, sedimentary textures, and structures. They will evaluate sedimentary					
	records to reconstruct tectonic activity, sea-level fluctuations, and paleoclimate					
	shifts. Learners will apply stratigraphic logging, sequence stratigraphy, and basin					
	modeling to correlate sedimentation patterns with tectonic regimes and					
	geochemical cycles. This equips them to assess hydrocarbon reservoirs,					
	paleoenvironmental changes, and geohazards, preparing for roles in energy					
	exploration, environmental consulting, and academic research in Earth system					
	dynamics.					

- 1. Sedimentary Environments: Processes, Facies and Stratigraphy H. G. Reading.
- 2. Sedimentary Petrology by M. E. Tucker.
- 3. Approaches to Interpretation of Sedimentary Environments by Douglas J. Cant and F. J. Hein.
- 4. Applied Sedimentology by Richard C. Selley.
- 5. Principles of Sedimentology and Stratigraphy by Sam Boggs Jr.
- 6. The Evolution Of Clastic Sedimentology by Hakuyu Okada and Alec Kenyon-Smith
- 7. Basin Analysis: Principles and Applications by P.A. Allen and J. R. Allen.
- 8. Principles of sedimentary basin analysis by A.D. Miall.

Course Code	ES5202N	Course	Metamorphic Petrology and	Course	DC.	L	T	P	
Course Coue	E33202N	Name	Thermodynamics	Category	rc	4	0	0	

Pre- requisite Courses	BSc with Geology/ Earth Sciences as Major in three-year UG Course	Co-requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department		Earth Scie	ices	Data Book / Codes/Standards	Nil

Course	The objective of the course will enable students to critically identify the geodynamic
Objective	processes and orogenic event which the rock suffered, through mathematical,
	textural and theoretical study. Identification of mineral assemblage and their
	interpretation of the process involved in the evolution will be aimed. Quantitative
	and qualitative plots of each assemblage and the reaction texture will be aimed to
	interpret the evolutionary history

Module	Syllabus	Duration (class- hour)	Module outcome
1	Introduction: Factors controlling transformations (T, P and fluids, Heat flow), minerals as pure and impure phases. Types of metamorphism: Regional, contact, dynamic, hydrothermal, impact, retrograde and ocean floor metamorphism; Protolith types and characteristic metamorphic minerals; metamorphic textures. Textures of contact and regional metamorphism, Tectonic context of metamorphic transformations Metamorphism: controls and types. Factors controlling metamorphism	8	Students will distinguish different types of metamorphism (e.g., regional, contact) and assess the roles of pressure, temperature, and fluids in driving metamorphic processes.
2	Metamorphic phase equilibria: nature of metamorphic transformations; textural and mineralogical evidence of equilibrium in metamorphic rocks; fluid-free, dehydration and decarbonation type metamorphic reactions; calculation of metamorphic reaction curves using standard state thermodynamic parameters (Gibbs free energy, enthalpy, entropy and volume) of mineral end members and fluid phase fugacities; activity-composition relations and solution models for important metamorphic minerals, variance of metamorphic assemblages, metamorphic geothermometry and geobarometry, solution of numerical problems	12	Learners will apply thermodynamic parameters (G, H, S, V) to model metamorphic reactions, construct reaction curves, and interpret equilibrium assemblages
3	Metamorphic grade and metamorphic facies: historical review; geological set-ups of low- and	10	Students will classify rocks by metamorphic

	high-grade regional, thermal and burial type metamorphism; prograde and retrograde metamorphism. Concept of Geothermobarometry and calculations		grade/facies and use thermobarometric data to reconstruct P-T paths and interpret tectonothermal evolution.
4	Graphical analysis of metamorphic rocks: construction and use of ACF, AKF and AFM diagrams; Schreinemakers analysis of metamorphic equilibria	10	Learners will construct and interpret compositional diagrams and Schreinemakers bundles to analyze metamorphic assemblage stability and reaction sequences
5	Progressive regional metamorphism- of pelitic, quartzo-feldspathic, basic and calcareous rocks: brief outlines of the classic type-areas; progressive metamorphism in relation to progressive deformation: pre-, syn- and post-deformation metamorphic textures.	6	Students will evaluate mineral assemblage evolution in pelitic, mafic, calcareous, and quartzo-feldspathic rocks through progressive metamorphism, integrating deformation phases
6	Metamorphism and global tectonics: regional metamorphism in relation to plate movements, orogeny and plutonism; origin of granulites and regional high-grade belts; pressure-temperature-time paths of metamorphism	6	Learners will synthesize tectonic models with metamorphic data to interpret orogenic evolution, origin of granulites, and retrograde paths using pressure-temperature-time trajectories.
Total		52	,

Course	Upon completion, students will interpret geodynamic processes and orogenic events					
Outcome	by analyzing mineral assemblages, reaction textures, and thermodynamic principles.					
	They will construct phase diagrams and P-T-t paths to deduce metamorphic					
	conditions and evolutionary histories of rocks. Learners will apply quantitative					
	methods (e.g., geothermobarometry) to assess reaction equilibria and interpret					
	chemical zoning in minerals. The course equips them to correlate metamorphic facies					
	with tectonic settings, reconstruct orogenic cycles, and evaluate crustal dynamics,					
	preparing them for advanced research in petrogenesis, subduction systems, and					
	planetary metamorphism.					

- 1. Shelly, D., 1993. Igneous and metamorphic rocks under microscope Chapman and Hall.
- 2. Fry, N., 2013. The field description of metamorphic rocks. John Wiley & Sons.
- 3. Miyashiro, A., 1994. Metamorphic petrology. Crc Press.
- 4. Winter, J.D., 2014. Principles of igneous and metamorphic petrology (Vol. 2). Harlow, UK: Pearson education.
- 5. Vernon, R.H. and Clarke, G.L., 2008. Principles of metamorphic petrology. Cambridge University Press.
- 6. Philpotts, A.R. and Ague, J.J., 2009. Principles of igneous and metamorphic petrology. Cambridge University Press.
- 7. Frost, B.R. and Frost, C.D., 2019. Essentials of igneous and metamorphic petrology. Cambridge University Press.
- 8. Best, M.G., 2002. Igneous and metamorphic petrology. John Wiley & Sons.
- 9. Spear, F.S., Pattison, D.R. and Cheney, J.T., 2017. The metamorphosis of metamorphic petrology.
- 10. Mason, R. and Mason, R., 1990. Petrology of the metamorphic rocks (p. 230). London: Unwin Hyman.
- 11. Tyrrell, G.W., 2012. The principles of petrology: an introduction to the science of rocks. Springer Science & Business Media.
- 12. Kornprobst, J., 2002. Metamorphic rocks and their geodynamic significance: a petrological handbook. Springer Science & Business Media.

		Course	Principles of	Course		L	Т	P
Course Code	ES5203N	Name	Stratigraphy and Indian	Category	PC	4	0	0
			Stratigraphy					

Pre-requisite Courses	BSc with Geology/ Earth Sciences as Major in three-year UG Course	Co-requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department		Earth Sci	ences	Data Book / Codes/Standards	Nil

Course	The objective of learning Stratigraphy is to acquire knowledge of synthesis of the					
Objective	stratal record, emphasizing the analysis of layered sequences, principally sedimentary, that cover about 3/4th of the Earth's surface. Archaean cratonic nucleii					
	of Peninsular India (Dharwar, Singhbhum, and Aravalli cratons); Proterozoic mobile					
	belts (Central Indian Tectonic Zone, Aravalli-Delhi and Eastern Ghats); Purana					
	sedimentary basins (Cuddapah and Vindhyan); Phanerozoic stratigraphy of India-					
	Spiti, Kashmir, Assam-Arakan, Damodar valley, Kutch, Trichinopoly, Siwaliks and					
	Indo-Gangetic alluvium					

Module	Syllabus	Duration (class- hour)	Module outcome
1	Principles of Stratigraphy Law of superposition. Stratigraphic nomenclature- lithostratigraphy, biostratigraphy and chronostratigraphy	4	Introduces the foundational principles of stratigraphy and stratigraphic classification systems, enabling learners to understand how stratigraphic units are defined, correlated, and
2	Sequence Stratigraphy Early Development of Sequence Stratigraphy Era—Eustatic vs. Tectonic Controls on Sedimentation; Sequence Models, Sea- level changes; Definitions of eustasy; relative sea-level and water depth, Accommodation and Shoreline Shifts, Shoreline trajectoriesTransgression; Forced Regressions; Normal Regressions, Stratigraphic Surfaces, Concept of system tracts	8	interpreted. Develops the ability to interpret stratigraphic architecture through sequence stratigraphic principles, emphasizing on the roles of sea-level change, sediment supply, and tectonics in controlling stratigraphic sequences.
3	Event stratigraphy	4	Equips learners with the skills to recognize and analyze timesignificant geological events recorded in the stratigraphic

			record and their global correlations.
4	Boundary problems	6	Promotes critical understanding of the complexities in defining and correlating stratigraphic boundaries and their implications in chronostratigraphy and geologic time scales.
5	Indian Stratigraphy ➤ Scope of stratigraphy: Broad distinction between Precambrian and Phanerozoic Stratigraphy	2	Provides a broad stratigraphic framework of India, distinguishing between major temporal divisions and their lithological and fossil characteristics.
6	Precambrian stratigraphy ➤ Precambrian and its subdivisions, Archean Provinces, Archean Nucleii, Cratons, Shields, Platforms and Mobile belts. Plate tectonics during the Precambrian ➤ Stratigraphy of Cuddapah and Vindhyan basins; Tectonostratigraphic framework of Dharwar craton, an overview of Bastar, Singhbhum, Bundelkhand and Aravalli cratons, Eastern Ghat mobile belt, Central Indian Tectonic Zone; Proterozoic sedimentary basins of India. Precambrian biota and its stratigraphic significance	16	Enhances comprehension of the tectonic, lithologic, and biotic evolution of India's Precambrian terrains, with emphasis on key stratigraphic successions and their geodynamic context.
7	Phanerozoic stratigraphy Major plate movements during Phanerozoic. Subdivisions of Phanerozoic up to Stage level. Stratigraphic framework of Marine Palaeozoic rocks of Himalaya with special reference to Kashmir, Spiti, Kumaon and their correlatives in Salt Range and peninsular India. Criteria for recognising major stratigraphic boundaries of Phanerozoic and their GSSPS. Permian-Triassic boundary sections of India Marine Mesozoic Rocks of the Himalaya	12	Enables learners to analyze the stratigraphic evolution of Indian Phanerozoic basins in the context of global events, including paleogeography, biodiversity trends, boundary events, and basin development from the Paleozoic to the Quaternary.

Total	52	
Andaman Islands		
Suture Zone. Quaternary deposits of		
Basin sediments of the Indus Tsangpo		
Siwalik) and recent advances. Indus		
(Subathu, Murree/Dagshai-Kasauli,		
of the Himalayan foreland basin		
stratigraphy of Kachchh. Stratigraphy		
sections of India. Palaeogene		
> Cretaceous-Palaeogene boundary		
Province		
Narmada Valley; Deccan Volcanio		
stratigraphy of the Cauvery Basin and		
Kachchh and Jaisalmer; Cretaceous		
Jurassic sedimentary basins of		
economic importance and climate		
➤ Gondwana Supergroup of rocks, its fauna and flora, depositional history		

Upon completion, students will analyze stratigraphic records to interpret depositional environments, sea-level fluctuations, and basin evolution using sequence stratigraphy, lithostratigraphy, and chronostratigraphic frameworks. They will correlate Indian stratigraphic units (e.g., Dharwar craton, Vindhyan Basin, Siwaliks) with global tectonic and climatic events. Learners will evaluate field data, fossil assemblages, and sedimentary cycles to reconstruct geological histories of key regions like Assam-Arakan and Kutch. This prepares them to address challenges in hydrocarbon exploration, basin analysis, and paleogeographic reconstructions, leveraging India's stratigraphic diversity for academic and industrial applications.

- 1. Principles of Sequence Stratigraphy by Octavian Cateneauau
- 2. Geology of India and Burma, M.S. Krishnan
- 3. Manual of Geology of India and Burma, E.H. Pascoe.
- 4. Fundamentals of Historical Geology and Stratigraphy of India by Ravindra Kumar.
- 5. Applied Stratigraphy by Eduardo A.M. Koutsoukos.
- 6. Geology of India, Vol-I, Vol-II, M. Ramakrishnan and R. Vaidyanadhan, Geological Society of India, Bangalore

Course Code	ES5221N	Course	Goodynamics	Course	PSE	L	T	P	
Course Code	E33221N	Name	Geodynamics	Category	FSE	3	0	0	

requisite Courses	Major in three-year UG Course fering Department	Courses Earth Sc	Nil	Courses Data Book /	Nil Nil
Pre-	BSc with Geology/ Earth Sciences as	Co-requisite	NI:1	Progressive	NT:1

Course Objective	The course is formulated to develop so that the students develop an overall idea about the dynamism of the Earth and different factors controlling the dynamism

Module	Syllabus	Duration (class-hour)	Module outcome
1	Concept on dynamism of the Earth: The driving mechanism of Plates, Paleomagnetism and Motion of Plates, Wilson Cycle, Continental Collision, Accreting Plate Boundaries, Subduction, Transform Faults, Hotspots and Mantle Plumes	8	Students will correlate plate motions with paleomagnetic data to reconstruct supercontinent cycles and subduction/collision events.
2	Heat budget and heat transfer: Fourier's Law of Heat Conduction, Earth's Surface Heat Flux, Heat Generation, One-dimension Steady Heat Conduction, Continental Geotherm, Subsurface Temperature, Plate Cooling Model of the Lithosphere	8	Learners will model geothermal gradients and lithospheric thinning using Fourier's law, predicting basin subsidence and metamorphic conditions
3	Introduction to fluid mechanics: One- Dimensional Channel Flows, Asthenospheric Counterflow, Pipe Flow, Flow Through Volcanic Pipes, Conservation of Fluid in Two Dimensions, Force Balance, Stream function, Post Glacial rebound, Angle of Subduction, Diapirism, Folding, Stokes law.	8	Students will quantify mantle convection, magma flow, and glacial rebound using Stokes flow equations
4	Fluid flow in porous media: Darcy's Law, Permeability Models, Flow in Confined and unconfined Aquifers, Equations of Conservation of Mass, Momentum, and Energy for Flow in Porous Media, Flow Model for Magma Migration	8	Learners will simulate magma migration/aquifer dynamics through permeability models and conservation equations.

5	Rheological modeling of crust and mantle:	7	Students will learn
	Diffusion and Dislocation Creep, Shear Flows		brittle/ductile behaviors
	of Fluids, Mantle rheology, Rheological		of rocks, linking creep
	Effects on Mantle Convection, Crustal		mechanisms to seismic
	rheology		anisotropy.
Total		39	

Upon completion, students will analyze Earth's dynamic processes, including mantle convection, plate tectonics, and lithospheric deformation, using geophysical models and observational data. They will evaluate forces driving plate motions, crustal stresses, and mantle-crust interactions through numerical simulations and stress-strain relationships. Learners will interpret seismic, gravity, and heat flow data to infer Earth's thermal evolution and rheological behavior. This equips them to assess geodynamic mechanisms (e.g., subduction, rifting) and their surface expressions, preparing for advanced research in tectonic reconstructions, geohazard prediction, and planetary evolution studies.

- 1. **Geodynamics** by D Turcotte and G Schubert.
- 2. Elasticity, Fracture and flow by J.C. Jaeger
- 3. Rheology of the Earth by G. Ranalli, Allen and Unwin
- 4. The Dynamic Earth by P.J. Willie

Con	ırse Code	ES5222N	Course	Coomounhology	Course	PSE	L	T	P	
Cou	irse Coue	E33222N	Name	Geomorphology	Category	FSE	3	0	0	

Pre- requisite Courses	BSc with Geology/ Earth Sciences as Major in three-year UG Course	Co-requisite Courses	Nil	Progressive Courses	Nil
Course Offe	ring Department	Earth Sciences		Data Book / Codes/Standards	Nil

Course	A subtle difference exists between Geomorphology and Geology. Geomorphology is
Objective	the study of the physical features of the Earth's crust as related to its geological
	features. The course provides an overview of various physical features on the
	surface of the earth which includes landforms, land forming processes, landscape
	evolution and how these depend on climate and tectonic regimes.

Module	Syllabus	Duration (class- hour)	Module outcome
1	Concepts in geomorphology. Historical and process Geomorphology.	4	Introduces foundational concepts in geomorphology, emphasizing both the historical evolution of landform studies and the principles governing surface processes.
2	Landforms in relation to climate, rock type, structure and tectonics.	10	Facilitates an understanding of the controls exerted by lithology, structural features, tectonic activity, and climatic regimes on landform development and landscape evolution.
3	Processes— weathering, pedogenesis, mass movement, erosion, transportation and deposition.	10	Develops the ability to explain surface-shaping processes and their interrelationships, with focus on the origin and modification of Earth's surface features.
4	Geomorphic processes and landforms – fluvial, glacial, aeolian, coastal and karst. River forms and processes – stream flow, stage discharge relationship; hydrographs and flood frequency analysis. Submarine relief.	10	Enhances comprehension of geomorphic systems across varied environments, including river behavior, landform types, and submarine topography, through quantitative and conceptual analysis.
5	Geomorphology and topographic analysis including DEM, Environmental change– causes, effects	5	Enables learners to interpret landforms using digital elevation models (DEMs), assess the impact of environmental change on

	on processes and landforms. Extraterrestrial geomorphology.		geomorphic processes, and explore geomorphic principles beyond Earth.
Total		39	

Upon completion, students will analyze land-forming processes (e.g., fluvial, glacial, aeolian) and interpret landform evolution using field observations, remote sensing, and geochronological tools. They will evaluate climatic and tectonic influences on landscapes through geomorphic indices and digital terrain models. Learners will integrate spatial data and process-based models to predict landscape responses to environmental changes. This prepares them for roles in geohazard assessment, environmental management, and paleoenvironmental reconstruction, applying geomorphological principles to address scientific and societal challenges.

- 1. Earth Surface Processes and Landforms and Sediment Deposit by John Bridge and Robert Demicco.
- 2. Earth Surface Processes by P. A. Allen
- 3. Geomorphology: A Systematic Analysis of Late Cenozoic Landforms, Pearson Education by A.L. Bloom.
- 4. Global Geomorphology by M.A. Summerfield.

Course Code	ES5261N	Course	Life through ages	Course	OE	L	T	P	
Course Code	E33201N	Name	Life through ages	Category	OE	3	0	0	

Pre- requisite Courses	BSc with Geology/ Earth Sciences as Major in three-year UG Course	Co-requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department		Earth Scie	ences	Data Book / Codes/Standards	Nil

Course	Our planet Earth hosts savoral forms of life through the ages. The arganisms			
Course	Our planet Earth hosts several forms of life through the ages. The organisms			
Objective	including human beings are the fittest in the recent environments. Similarly, the			
	history of the Earth also preserved the impressions of different environment friendly			
	organisms. In the rock record we get glimpses of these organisms for different time			
	periods. So, knowledge of the appearance, ecology, and evolution of the organisms			
	will help to decipher the geological history of different rock strata			

Module	Syllabus	Duration (class- hour)	Module outcome
1	Ideas about origin of life; Geological Time Scale	3	Students will be able to explain scientific ideas about the origin of life and interpret the Geological Time Scale in the context of Earth's biological and geological evolution
2	Evidences of early life in the rock record.	3	Students will be able to interpret geological evidence of early life preserved in the rock record and understand its significance in Earth's evolutionary history.
3	Fossils—Different Types; Taphonomy and Preservation.	8	Students will classify different types of fossils and explain the processes of taphonomy and fossil preservation.
4	Classification of the organic world.	6	Students will be able to explain organic world based on biological taxonomy and evolutionary relationships.
5	Cambrian Explosion	3	Students will be able to describe Cambrian Explosion and its significance in rapid diversification of multicellular life during early Paleozoic era.
6	Appearance of Vertebrates and Invertebrates and their evolutionary diversification	8	Students will be able to explain the origin, appearance, and evolutionary diversification of vertebrates and invertebrates through geological time.
7	Appearance of plants and their evolutionary diversification	6	Students will be able to describe the origin of plants and analyze their evolutionary

			diversification through different geological periods.
8	Law of Faunal Succession	2	Students will be able to explain the Law of Faunal Succession and apply it to interpret the relative ages of rock layers and the fossil record.
Total		39	

Course Outcome

Upon completion, students will analyze fossil records to interpret evolutionary trends, ecological adaptations, and biodiversity shifts across geological time scales. They will correlate fossil assemblages with stratigraphic units to reconstruct paleoenvironments and bio-stratigraphic zonation. Learners will evaluate extinction events, speciation patterns, and climate interactions using paleontological data and molecular clocks. The course equips them to apply principles of taphonomy, biostratigraphy, and paleoecology to decipher Earth's biological history, preparing for roles in paleontological research, hydrocarbon exploration, and conservation paleobiology.

- 1. Principles of Paleontology by David M. Raup and Steven M. Stanley.
- 2. Invertebrate Paleontology and Evolution by E.N.K Clarkson.
- 3. Microfossils, Brasier, M.D.
- 4. Micropaleontology: Principles and applications by Pratul Kumar Saraswati, M.S. Srinivasan,
- 5. Vertebrate Paleontology by M Benton
- 6. Evolution of the Vertebrates: A History of the Backboned Animals Through Time by Edwin H. Colbert

Course Code	ES5262N	Course	Natural resources	Course	OE	L	T	P	
	E33202N	Name	and Energy	Category	OE	3	0	0	

Pre- requisite Courses	BSc with Geology/ Earth Sciences as Major in three-year UG Course	Co-requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department		Earth Scie	ices	Data Book / Codes/Standar ds	Nil

Course	The course aims to introduce the natural energy systems coupled with unconventional
Objective	energy resources emphasising particularly on geological contexts. The lectures under
	this course will explore the present and projected demands; genesis, resources and
	reserves of conventional energy (fossil fuels and nuclear energy) - their usage,
	application and related environmental issues. The classes will also cover a series of
	other alternate, unconventional and renewable energy sources including enhanced
	coal and shale gas energy, natural and engineered geothermal resources together with
	solar, biomass (conversions), wind power, and hydro-energies

Module	Syllabus	Duration (class- hour)	Module outcome
1	Introduction; historical developments; classification of energy systems	1	Students will be able to understand the energy systems and classify different types of energy systems based on their sources and characteristics.
2	Conventional Energy: origin and genesis through geological time scale; classifications; global and Indian resources; different methods of exploration and beneficiation; future demand and usage	10	Students will be able to explain the origin and classification of conventional energy resources, assess their global and Indian distribution, describe exploration methods and beneficiation, and future demand and usage trends.
3	Unconventional/Alternative/Renewable Energy: Coal Bed Methane (CBM); occurrence and genesis; natural processes of recovery; Enhanced Coal Bed Methane (ECBM); processes of recovery, concepts of adsorption and desorption; application and recovery; resources and estimates for future usage; environmental risks	10	By the end of this module, students will understand recovery processes, occurrence, and environmental implications of Coal Bed Methane (CBM) and Enhanced Coal Bed Methane (ECBM), including key concepts such as adsorption/desorption and future resource potential.
4	Geothermal Energy; concepts and developments; natural and engineered Geothermal energy resources; hydrofracking; application and recovery;	3	By the end of this module, students will be able to understand the principles, technologies, and environmental considerations of

Total		39	of the global scenario.
			resources in India within the context
			distribution, demand, and management of energy and mineral
	global scenario and demand		will be able to analyze the
9	Energy and mineral resources in India,	3	By the end of this module, students
			management for sustainable development and efficient utilization.
			will understand principles and strategies of resource and energy
8	Resource and energy management	3	By the end of this module, students
			current energy resources and evaluate their sustainability, availability, potential for future use.
7	Present and future resources	3	students will be able to assess
			climate change mitigation.
			long-term carbon storage and
			involved in CO ₂ sequestration for
U	Geological CO2 sequestration	3	will understand principles, methods
6	Coolesiaal CO2 convention	3	sources. By the end of this module, students
			biomass, wind, and hydro energy
			and future potential of solar,
	energies		technological developments, conversion methods, applications,
	(conversions), wind power, and hydro-		understanding of the concepts,
	estimates of solar, biomass		will gain a comprehensive
5	Concepts, developments, usage and	3	By the end of this module, students
			potential.
			applications, and future resource
	6 ,		hydro-fracking methods,
	resources and estimates for future usage; environmental risks		geothermal energy, including natural and engineered resources,

Course	Upon completion, students will evaluate the genesis, distribution, and sustainability		
Outcome	of conventional energy resources (fossil fuels, nuclear) and unconventional systems		
	(shale gas, geothermal, renewables) using geological, geochemical, and geophysical		
	principles. They will assess resource exploration strategies, environmental impacts,		
	and mitigation measures for energy extraction and utilization. Learners will analyze		
	renewable energy potential in geological contexts and integrate economic, technical,		
	and policy frameworks for energy transition. This prepares them for roles in		
	sustainable resource management, energy sector innovation, and climate-resilient		
	policy formulation.		

Learning	➤ Introducing Natural Resources by G. Park
Resources	Earth's Natural resources by J. V. Walther
	> Fundamentals and Applications of Renewable Energy by Mehmet Kanoglu,
	Yunus A. Cengel Dr., John M. Cimbala
	Advances in Sustainable Energy by Ahmad Vasel, David S-K. Ting
	Solar and Wind Energy by Catherine Waltz
	Energy: Perspectives, Problems, and Prospects by Michael B. McElroy
	Fossil Fuels by Neil Morris
	Energy Resources by Andrew L. Simon
	➤ Energy for a Sustainable World: From the Oil Age to a Sun-Powered Future by
	Vincenzo Balzani and Nicola Armaroli

		Course	Metamorphic Petrology and	Course		L	Т	P
Course Code	ES5271N	Course Name	Sedimentology Practical	Category	PC	0	0	3

Pre- requisite Courses	BSc with Geology/ Earth Sciences as Major in three-year UG Course	Co-requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department		Earth Science	ees	Data Book / Codes/Standards	Nil

Course	The main objective of the petrological study of metamorphic rock is to familiarize					
Objective	student with different variety of metamorphic rocks in hand specimens for field					
	identification and also under thin section in laboratory work. The textural study will					
	teach them the process to identify the reaction texture, processes involved and finally					
	deduction of the evolutionary history of the rocks. The practical lessons in					
	sedimentology will enable the students to identify sedimentary rocks in hand					
	specimens and thin sections. Detailed study of textures, grain-size analyses,					
	diagenetic structures will be dealt in detail to formulate an idea on the depositional					
	condition and provenance					

Module	Syllabus	Duration	Module outcome
		(class-hour)	
1	 Metamorphic Petrology ➤ Studies of petrography of common metamorphic rocks under microscope. ➤ Microscopic study of metamorphic facies, deformation and recrystallisation history from set of thin sections of metamorphic rocks. ➤ Construction of ACF, AKF, and AFM diagrams. ➤ P-T estimation using important models of geothemobarometry. ➤ Interpretation of reaction textures. 	19	Students will develop skills in understanding different textures under microscope in metamorphic rocks and interpret their evolutionary path and identify their protolith
2	Sedimentology ➤ Study of sedimentary rocks from hand specimens. ➤ Detailed petrographic studies of various clastics, non-clastics and volcaniclastics-descriptive studies and grain-size analysis Paleocurrent Analysis	20	Learners develop hands- on skills in identifying sedimentary rock types using hand specimens and thin sections, performing grain-size analysis, and interpreting sedimentary processes and paleoenvironments

		through paleocurrent and petrographic data
Total	39	

Course Outcome

Upon completion, students will identify and classify metamorphic rocks in hand specimens and thin sections, analyzing reaction textures (e.g., coronas, porphyroblasts) to deduce P-T conditions and evolutionary histories. They will apply petrographic techniques and phase equilibria models to interpret metamorphic processes. In sedimentology, learners will characterize sedimentary rocks via grain-size analysis, diagenetic structures, and textural studies to infer depositional environments and provenance. The course equips them to integrate field and laboratory data for reconstructing geological histories, preparing them for roles in resource exploration, basin analysis, and academic research.

- ➤ Shelly, D., 1993. Igneous and metamorphic rocks under microscope Chapman and Hall.
- > Fry, N., 2013. The field description of metamorphic rocks. John Wiley & Sons
- Miyashiro, A., 1994. Metamorphic petrology. Crc Press.
- ➤ Winter, J.D., 2014. Principles of igneous and metamorphic petrology (Vol. 2). Harlow, UK: Pearson education.
- ➤ Vernon, R.H. and Clarke, G.L., 2008. Principles of metamorphic petrology. Cambridge University Press.
- Adams, A.E., MacKenzie, W.S. and Guilford, C., 2017. Atlas of sedimentary rocks under the microscope. Routledge.
- ➤ Boggs Jr, S., 2009. Petrology of sedimentary rocks. Cambridge university press.
- Korte, D., Kaukler, D., Fanetti, M., Cabrera, H., Daubront, E. and Franko, M., 2017. Determination of petrophysical properties of sedimentary rocks by optical methods. Sedimentary Geology, 350, pp.72-79.
- Tucker, M.E., 2011. Sedimentary rocks in the field: a practical guide. John Wiley & Sons.

Course Code	ES5272N	Course	Fieldwork	Course	DC.	L	T	P
Course Coue	ESSZIZN	Name	rieidwork	Category	rc	0	0	0

Pre- requisite Courses	BSc with Geology/ Earth Sciences as Major in three-year UG Course	Co-requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department		Earth Scie	ıces	Data Book / Codes/Standards	Nil

C	This works are the state of the
Course	This module aims to equip students with advanced field skills to map lithological
Objective	boundaries, identify structural features (e.g., folds, faults, foliations), and interpret
	their relationship to regional deformational histories. Through immersive fieldwork,
	students will learn to integrate field observations with tectonic frameworks, using
	tools like cross-section balancing, stereonet analysis, and geological mapping. The
	two-week duration ensures hands-on exposure to diverse litho-units, fostering
	proficiency in data collection, spatial interpretation, and synthesis of structural
	evolution for applications in resource exploration, geohazard assessment, and
	tectonic reconstructions.

Module	Syllabus	Duration (class-hour)	Module outcome
1	Mapping of lithological boundaries, identify rock types in field, identification of structural features and interpretation with respect to the regional deformational history of the different litho-units in the field. The field duration will be of at least two weeks duration	Minimum 2 weeks	Hands-on training of the students on rock exposures in hard rock terrain to prepare lithological and structural maps and identify rocks in the field.
Total	1	Minim	num 2 weeks

Course Outcome	Upon completion, students will demonstrate competence in mapping lithological contacts, structural features, and deformational sequences using field techniques (e.g., compass-clinometer measurements, GPS mapping). They will correlate field data with regional tectonic histories through kinematic analysis, cross-section construction, and strain quantification. Learners will synthesize findings into comprehensive geological reports, integrating structural interpretations with regional				
geodynamic models. This prepares them for roles in mineral exploration, g engineering, and academic research, emphasizing teamwork, communication, and applied problem-solving in geological fieldwork.					

- Coe, A.L. ed., 2010. Geological field techniques. John Wiley & Sons.
- ➤ Barnes, J.W. and Lisle, R.J., 2013. Basic geological mapping. John Wiley & Sons.
- Lisle, R.J., Brabham, P. and Barnes, J.W., 2011. Basic geological mapping. John Wiley & Sons.
- ➤ Compton, R.R. and Compton, R.R., 1985. Geology in the Field (p. 416). New York: Wiley.
- ➤ Ghosh, S.K., 2013. Structural geology: Fundamentals and modern developments. Elsevier.
- ➤ Gokhale, N.W., 1991. a Manual of Problems in Structural Geology. CBS Publication
- ➤ Billi, A. and Fagereng, A., 2019. Problems and solutions in structural geology and tectonics (Vol. 5). Elsevier.

Third Semester

Course Code	EC6101N	Course	Paleontology and	Course	PC	L	Т	P	
Course Coue	ESOIUIN	Name	Mass Extinction	Category	PC	4	0	0	

Course Off	UG Course ering Department	Earth Scien	ces	Data Book / Codes/Standards	Nil
Pre- requisite	BSc with Geology/ Earth Sciences as Major in three-year	Co-requisite Courses	Nil	Progressive Courses	Nil

Course Objective

The main objective of the Paleontology study is to is to familiarize student with preserves evidences of life either as whole body or, parts or their activities in majority of rock records from Late Archaean to Quaternary. Appearances, persistence and disappearances of different forms of life in the rock record across time confirm the theory of evolution, extinction. Detailed study of microfossils has a significant role in petroleum exploration.

Module	Syllabus	Duration (class-hour)	Module outcome
1	 Types of organisms, growth, outline of molluscan coiling, growth rate, population study, species concept, functional morphology, concept of adaptation and exaptation. Theories on evolution, types, patterns and rate of evolution, paleoecology, Taphonomy, Mass extinction. Concepts of Linnean, Numerical and Cladistic Taxonomy. Evolutionary patterns in different groups of mega-invertebrate and vertebrates with an outline of study of important morphological aspects. 	20	Students will classify organisms using taxonomic principles, analyze evolutionary patterns through fossil records, and evaluate mechanisms of adaptation/extinction to reconstruct paleoecological dynamics.
2	 Synoptic overview of development of land plants. Brief outline of palynology and its uses. Gondwana flora—Indian and global aspects. Hominid and Proboscidian evolution. Trace fossils and Precambrian fossils. Morphological study of Foraminifers, Radiolaria, Ostracods, Conodonts, Diatoms, nannofossils and their importance in paleoecological analysis. 	20	Learners will correlate plant/vertebrate evolution with Gondwana stratigraphy, utilize microfossils as paleoenvironmental proxies, and interpret trace fossils to infer Precambrian biotic activity.
3	➤ Definition of Extinction, background extinction, extermition and mass extinction.	12	Students will learn extinction mechanisms, analyze PT/KT

	➤ Major and minor Mass Extinction: with special emphasis on PT and KT boundary.		boundary records to evaluate causal factors (e.g., volcanism, impacts), and assess biodiversity crises in deep-time contexts
Total		52	^

Course Outcome

Upon completion, students will analyze fossil records to interpret evolutionary trends, extinction mechanisms, and biodiversity shifts using taxonomic, taphonomic, and paleoecological frameworks. They will evaluate mass extinction events (e.g., PT/KT boundaries) through multidisciplinary datasets, correlating biotic crises with environmental drivers. Learners will apply micropaleontological techniques to reconstruct depositional environments and assess fossil fuel reservoirs. This prepares them for roles in hydrocarbon exploration, paleoclimate research, and conservation paleobiology, integrating fossil data with Earth's dynamic history.

- 1. Principles of Paleontology by David M. Raup and Steven M. Stanley.
- 2. Invertebrate Palaeontology and Evolution by E.N.K Clarkson.
- 3. Microfossils, Brasier, M.D.
- 4. Micropaleontology: Principles and applications by Pratul Kumar Saraswati, M.S. Srinivasan,

Course Code	ES6102N	Course	Ore Geology and	Course	PC	L	Т	P	
Course Coue	E30102N	Name	Fuel Geology	Category	PC	4	0	0	

Pre- requisite Courses	BSc with Geology/ Earth Sciences as Major in three-year UG Course	Co-requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department		Earth Sciences		Data Book / Codes/Standards	Nil

Cauraa	The main objective of the course is to familiarize with common ore minerals, their
Course	The main objective of the course is to familiarize with common ore innerals, their
Objective	identifying criteria at various scales of study, to understand the genetic controls
	exerted by physical and chemical processes on ore formation in various geologic
	settings. Understanding on the origin of different variety of fuels and their process of
	preservation and thus finally track down natural reserves.

Module	Syllabus	Duration (class-	Module outcome
		hour)	
1	Ore Geology Introduction to ore and ore deposits: Primary differentiation of the earth into shell structure and elemental zonation. Mineralization through ages and geological events. Classification of ore deposits with special emphasis on tectonics, mineralization in mobile belts and in stable areas in relation to plate theory.	6	Students will identify ore body types and morphologies, interpreting their genesis based on structural, stratigraphic, and lithologic controls.
2	Magmatic Ore Deposits: Petrological and geochemical background to ore formation; general characteristics and genesis of magmatic ore deposits: chromite deposits, base-metal Ni-Cu sulfide deposits, PGE sulfide deposits, raremetal pegmatites and diamond deposits associated with kimberlites and lamproites.	6	Students will assess magmatic segregation processes using textural and mineralogical evidence.
3	➤ Hydrothermal Ore Deposits: Basic concepts related to hydrothermal ore formation - Role of physical and chemical environment on metal complexing, transport and deposition; chemical nature of hydrothermal ore fluid in magmatic, metamorphic and sedimentary basinal environments; fluid. General characteristics and genesis of hydrothermal ore deposits: Porphyry deposits; greisens and related ore	6	Students will assess hydrothermal alteration processes using textural and mineralogical evidence

	deposits; skarn and carbonate-replacement deposits; epithermal deposits; volcanic-hosted massive sulfide deposits; orogenic gold deposits; iron oxide-copper-gold (IOCG) deposits; SEDEX Pb-Zn-Ag deposits.		
4	➤ Ore deposits Formed by Chemical and Clastic Sedimentary Processes: Ore deposits formed by chemical precipitation from surface waters (hydrogene deposits) and clastic sedimentation - Iron ores in ironstones; sedimentary-rock-hosted Mn and P deposits; coastal heavy mineral sand deposits; and fluvial placer (and paleo-placer) deposits. Ore deposits formed by supergene processes. In-situ supergene ores and formation of lateritic bauxite and Ni-Co deposits; overprinting of hypogene ores and formation of supergene gold (in lateritic weathering) and copper (in arid and semi-arid climates) ores.	6	Learners will interpret sedimentary and weathering processes responsible for the formation of ores like banded iron formations, manganese nodules, and laterites
5	Findian Mineral deposits: India's geological frame and Precambrian mineralization and Archean Greenstone belts and Metallogenic pattern. Metallogenic provinces and epoch in Indian subcontinent; distribution of various types of ore deposits and industrial minerals in India. Major ferrous and non-ferrous metal deposits in India and their genesis. Classification of Precious metal deposits with special reference to Platinum Group metals and Gold. Genetic processes and Indian context.	6	Learners will evaluate the geological framework and genesis of key Indian ore deposits, integrating tectonic, metamorphic, and structural data.
6	Fuel Geology Physico-chemical properties of natural hydrocarbon. Its composition and different fractions. Source rock, maturation studies. Origin, nature and migration (primary and secondary) of oil and gas. Transformation of organic matter into kerogen, organic maturation, thermal cracking of kerogen. Characteristics of Reservoir rocks and traps: structural, stratigraphic and combination), Reservoir geometry, porosity, permeability, overpressure, entrapment: classification of traps. Oilfield fluid: water, oil and gas occurrence. Movement of oil and gas in a pool.	10	Students will assess hydrocarbon generation, migration, and accumulation using basin modeling and reservoir characterization techniques. Learners will examine the geology and tectonic evolution of major Indian petroleum provinces and correlate with global analogues

 Surface indications and direct detention of hydrocarbon: mode of occurrence-surface and subsurface occurrences. Migration and accumulation of petroleum and its geological framework. Prospecting for oid and gas, drilling and logging procedures. Oil bearing basins of India and the world Geology of productive oilfields of India Position of oil and natural gas in India, future prospects and economic scenario. Definition of Coal, Types of Coal, stages of coal formation Peatification, Coalification and its stages Geological features of peatlands and coal seams Coal petrography: macerals, their origin and microlithotypes. Application of coal petrology Coal characterization. Beneficiation, utilization and industrial classification. Processing and end-use sector quality control, environmental aspects of coal-based industries. Geological and geographical distribution of coal deposits in India. Detailed geology for som important coalfields of India. Methods of coal prospecting and estimation of coal reserves. Coal production and problems of coal industry in India. Coalbed Methanemode of occurrence method/s of extraction. Minerology, Geochemistry and mode of occurrence of radioactive minerals. Techniques of detection and measurements of radioactivity, Distribution of radioactive minerals in India. 	12	Students will describe coal types, maceral composition, and transformation processes through ranks using petrographic and geochemical methods. Learners will map major Indian coalfields, analyze their depositional environments, and interpret their economic significance. Students will evaluate the exploration, extraction, and environmental aspects of unconventional fuels using geological and geochemical datasets
---	----	--

Course Outcome

Students will classify ore deposits and hydrocarbon systems using genetic models, mineralogical criteria, and geochemical data. They will evaluate magmatic, hydrothermal, and sedimentary processes governing mineralization and fossil fuel formation. Learners will interpret exploration datasets to assess reserves, apply beneficiation techniques, and analyze coal petrology. This equips them to address challenges in mining, energy resource management, and sustainable extraction, preparing for careers in mineral exploration, petroleum geology, and industrial resource sectors.

- 1. Elements of Petroleum Geology by Richard C. Selley.
- 2. Coal: Classification, Coalification, Mineralogy, Trace-Element Chemistry, and Oil and Gas Potential, Edited by P.C. Lyons B. Alpern.
- 3. Coal and Lignite Resources of India: An overview, Geological Society of India, Banglore by S.K. Acharyya.
- 4. Stach E. Mackowsky M.T.H., Teichmuller M., Taylor G.H. Chandra D., Teichmuller R., 1982, Coal petrology, Gebruder Borntraeger, Stuttgart
- 5. Textbook of Coal (Indian Context) by D. Chandra, R.M. Singh and M.P Singh.
- 6. Petroleum Geology by F.K North.
- 7. Principles of Nuclear Geology by U. Aswathanarayana.
- 8. Radioactivity in Geology. Principles and applications by Ellis Hoorwool Durrance E.M

Course Code	ES6102N	Course	Introduction to	Course	PC	L	Т	P	
Course Code	ES6103N Name	extraction of Critical Minerals	Category	PC	4	0	0		

Pre- requisite Courses	BSc with Geology/ Earth Sciences as Major in three-year UG Course	Co-requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department		Earth Sciences		Data Book / Codes/Standards	Nil

Course Objective

The main objective of the course is to familiarize with critical minerals, REE and their identifying criteria. To understand physical and chemical processes on Critical mineral formation in various geologic settings. Understanding the origin of different variety of Critical Minerals thus finally track down natural reserves and their process of extraction.

Module	Syllabus	Duration	Module outcome
		(class-	
		hour)	
	Introduction to Critical Minerals: -Definition		Students will define critical
	of Critical Elements, Critical Minerals,		minerals based on
	Strategic Elements, Energy Critical Elements.	4	economic, strategic, and
1	An Introduction to Physical properties of		supply chain criteria. They
	Minerals containing 30 Critical Elements:		will assess current global
	Antimony, Beryllium, Bismuth, Cobalt,		trends in critical mineral
	Copper, Gallium, Germanium, Graphite,		demand and understand
	Hafnium, Indium, Lithium, Molybdenum,		their roles in renewable
	Niobium, Nickel, PGE, Phosphorous, Potash,		energy, electronics, and
	REE, Rhenium, Silicon, Strontium, Tantalum,		national security
	Tellurium, Tin, Titanium, Tungsten,		
	Vanadium, Zirconium, Selenium and		
	Cadmium.		
	Sources of Critical Minerals:		Learners will identify key
	Primary sources – Magmatic, Sedimentary	4	geological environments
2	and Metamorphic–Metasomatic rocks,		(e.g., pegmatites,
	hydrothermal activity, syn-/dia-/epi-genetic		carbonatites, laterites,
	affects, remobilization-recrystallization,		hydrothermal veins)
	weathering, transportation (in placers),		associated with critical
	Secondary sources- Waste Materials mainly e-		minerals like REEs, lithium,
	waste		and cobalt, and explain
			mineralization processes
			using petrogenetic models.
3	Genesis of Critical Minerals:		Students will classify
	Magmatic mineral systems- (1) Komatiite-	4	critical minerals using
	hosted Ni-Cu systems; (2) Layered intrusion-		compositional and structural

	hosted Cr-PGE systems; and (3) Mafic to Ultramafic Ni-Cu±PGE systems, (4) Carbonatite-hosted rare-metal (LREE±Nb±Th) systems, (5) Pegmatite-hosted Li systems Magmatic-hydrothermal mineral systems-Carlin-type Au systems, VMS Cu-Pb-Zn-Au systems, porphyry-skarn Cu-Au-Mo systems, Kiruna-type Fe-P systems, Iron-oxide Cu-Au-U-LREE (IOCG) systems, Intrusion-related Au (IRGD) systems		properties, interpret trace element and isotopic signatures, and use geochemical data to guide exploration and beneficiation planning.
4	Hydrothermal mineral systems-Epithermal Au-Ag systems Sedimentary Mineral systems- Evaporite Li	0	Learners will apply geochemical and geophysical principles to
	brine systems, Placer Au systems, Paleo-placer Au-U systems, Titanium-REE beach sand placer Basinal Hydrothermal Mineral systems: Zambian-type Cu-Co systems, Intrusion-hosted Ni-Cu±PGE, Sedimentary rock-hosted sedimentary-exhalative sulfide (SEDEX) Cu-Zn-Pb systems, Carbonatite REE, Mississippi Valley-type (MVT) Pb-Zn-Ba systems, Broken Hill-Type (BHT) Pb-Zn-Ag systems, BIF-type Fe systems, BIF-type Mn systems, Unconformity-related and Roll front-type U systems	8	estimate reserves and interpret drill-core data for subsurface mineral exploration.
5	Occurrence and Use of Critical Minerals: Global occurrence of Critical Minerals, Emphasis on Indian context. Uses of Critical Minerals	2	Learners will apply geochemical and geophysical principles to estimate reserves and interpret drill-core data for subsurface mineral exploration. Students learn different mining mechanisms their pros and cons for specially used mechanism in Indian context compared to world mining processes

6.	Minning of Critical Minerals > Planning and Design > Development of the deposit > Extraction Methods • Cut-and-Fill method • Placer Mining and Dredging • Leaching • Solution Mining	20	
7	Extractive Metallurgy for Critical Minerals: Hydrometallurgical Techniques - Solvent extraction, ion exchange. Pyro metallurgical Techniques - Smelting, roasting, refining. Recycling & Urban Mining - Circular economy, e-waste recovery	10	Students will compare and contrast mining methods (e.g., cut-and-fill, placer, leaching) and metallurgical processes (hydrometallurgy, pyrometallurgy) for critical mineral recovery, assessing their efficiency and environmental impacts
Total		52	

Course	Learners will identify critical minerals and their geological settings, analyzing
Outcome	magmatic, hydrothermal, and sedimentary systems. They will assess extraction
	methods (e.g., leaching, placer mining) and apply geochemical models to evaluate
	resource potential. Students will integrate sustainability principles in mineral recovery
	and e-waste recycling. This prepares them for roles in strategic mineral exploration,
	green technology industries, and policy-making, addressing global demands for
	energy-critical elements.

Learning	Text Book:					
Resources	Mineral Exploration Principles and Applications (2012) S. K. Haldar					
	 Mineral Resources of India: An Introduction to Economic Geology (2022). Rohini Singh 					
	Rare Earth Metals and Minerals Industries (2024) Y.V Murty, Mary A. Alvin, Jack. P Lifton					
	Strategic Minerals in India: present status and future challenges. (2019). Randive, K.,					

Course Code	ES6171N	Course	Paleontology	Course	DC.	L	T	P
Course Code	E301/1N	Name	practical + Ore Geology practical	Category	PC	0	0	3

Pre- requisite Courses	BSc with Geology/ Earth Sciences as Major in three-year UG Course	Co-requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department		Earth Scien	ices	Data Book / Codes/Standards	Nil

Course Objective

For detailed idea about different physical, micro structural properties of ore minerals laboratory-demonstration is essential.

Observing the fossils in hand specimen and under microscope will help to get the vivid ideas on functional morphology of the ancient faunas. Thorough knowledge in micropaleontology helps to get idea on petroleum exploration. This creates the opportunity to the students to serve the petroleum industry in future.

Module	Syllabus	Duration (class- hour)	Module outcome
1	 Ore Geology practical Megascopic study of the common oresstructures, fabric and associations. Microscopic study of common sulphide, oxide and non-metallic ore minerals. Study of the ore textures. Interpretation of drill core data to reconstruct subsurface structures. Tackling problems related to reserve estimation. 	19	Students will proficiently identify common ore minerals in thin sections, analyzing their textures, structures, and associations to infer genetic processes. Using drill-core data, students will reconstruct subsurface geometries of ore bodies, integrating lithological and structural observations to evaluate deposit models. Learners will apply geometric and statistical methods to estimate mineral reserves, addressing uncertainties in resource assessment.
	 Paleontology practical Study of population in bivalves/brachiopods. Study of assemblage of fossils for paleoecological reconstruction. Functional morphology of bivalves. Study of sexual dimorphism in ammonites. 	20	Students will learn reconstruction of environment from functional morphology, they will be able to differentiate sexual dimorphism, various foraminifera and also help to understand the importance of

➤ Biometric study and simple stati analysis there from.	Mollusca
➤ Study of larger and smaller foramin	nifers.
Description of echinoid and gastro	pods.
Total	39

Course Outcome

Students will demonstrate proficiency in megascopic/microscopic ore mineral identification, texture analysis, and drill-core interpretation.

Learners will classify fossils using morphological and biometric analyses, interpreting functional adaptations and population dynamics. They will apply statistical tools to microfossil datasets (e.g., foraminifers) for paleoenvironmental reconstruction and stratigraphic correlation. Proficiency in micropaleontological techniques prepares students for petroleum exploration, biostratigraphy, and academic research, emphasizing fossil-based solutions to energy and environmental challenges.

Learning Resources

Text Book (Ore Geology):

- 1. Pracejus, B., 2015. The ore minerals under the microscope: an optical guide (Vol. 3). Elsevier.
- 2. Craig, J.R., Vaughan, D.J. and Hagni, R.D., 1994. Ore microscopy and ore petrography (Vol. 406). New York, NY: John Wiley & Sons.
- 3. Deer, W.A., 1978. Rock-forming minerals. Geological Society of London.
- 4. Uytenbogaardt, W. and Burke, E.A.J., 1985. Tables for microscopic identification of ore minerals. Courier Corporation.
- 5. Castroviejo, R., 2023. Introduction to Ore Microscopy. In A Practical Guide to Ore Microscopy—Volume 1: Mineral Identification (pp. 3-25). Cham: Springer International Publishing.
 - Lindsley, D.H. ed., 2018. Oxide minerals: petrologic and magnetic significance (Vol. 25). Walter de Gruyter GmbH & Co KG.

Text Book (Palaeontology):

- 1. Donovan, S.K., 2021. Hands-on Palaeontology: a practical manual. Liverpool University Press.
- 2. Subramani, K., & Manivannan V., Palaeontology Practical Manual. Vishal Publishing Co.

Fourth Semester

			GIS & Remote Sensing and			L	T	P
Course Code	ES6201N	Course Name	Application of AI-ML in Geosciences	Course Category	PC	4	0	0

Pre- requisite Courses	BSc with Geology/ Earth Sciences as Major in three-year UG Course	Co-requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department		Earth Scien	ices	Data Book / Codes/Standards	Nil

Course	This course aims to integrate GIS, Remote Sensing, and AI-ML techniques to analyze
Objective	geospatial data for solving geological challenges. Students will learn to process
	satellite imagery, apply machine learning algorithms (e.g., neural networks,
	clustering), and interpret results for mineral exploration, hazard assessment, and
	environmental monitoring. The course emphasizes hands-on workflows for predictive
	modeling, spatial pattern recognition, and ethical AI practices in geosciences.

dule	Syllabus	Duration (class-hour)	Module outcome
1	Fundamentals of GIS & Remote Sensing: Principles, platforms, sensors, resolutions (spatial, spectral, temporal), geospatial data types.	8	Students will define core principles of GIS and remote sensing, explain electromagnetic spectrum interactions with Earth's surface, and differentiate between active/passive sensors. Learners will apply coordinate systems and map projections to geospatial data, preparing for advanced spatial analysis.
2	Preprocessing: Noise reduction, normalization, geometric/radiometric correction, spectral analysis.	10	Learners will learn geoprocessing operations (e.g., buffering, overlay, interpolation). They will quantify terrain attributes (slope, aspect, curvature) from DEMs and evaluate spatial autocorrelation to identify patterns in geological/environmental datasets.
3	AI-ML Techniques: Supervised (regression, classification) and unsupervised learning (clustering) for lithology mapping, anomaly detection.	12	Students will implement supervised and unsupervised ML algorithms for land cover classification.
4	Applications in Geosciences: Mineral prospectivity	10	Learners will design for high-resolution image segmentation. They will integrate

	mapping, landslide susceptibility modeling, climate change studies using satellite data.		transfer learning with satellite imagery to automate feature extraction and detect anomalies (e.g., landslides, pollution plumes).
5	Geo-statistics & ML Integration: Variogram modeling, kriging with Python libraries (e.g., Scikit- learn), uncertainty quantification.	8	Students will process large-scale geospatial datasets. They will deploy scalable AI pipelines for time-series analysis of environmental changes.
6	Ethics & Challenges: Bias mitigation, data privacy, sustainability in AI-driven geoscience workflows.	4	Learners will develop end-to-end projects combining GIS, remote sensing, and AI/ML to solve real-world problems. They will validate models with field data and communicate results through interactive geospatial dashboards.
Total		52	

Course	Students will demonstrate proficiency in processing geospatial datasets					
Outcome						
Outcome	(GIS/Remote Sensing) and applying AI-ML algorithms for resource exploration,					
	hazard prediction, and environmental analysis. They will design workflows for					
	mineral prospectivity, seismic interpretation, and land-use classification using					
	Python tools. Learners will evaluate model accuracy, integrate geostatistical					
	methods, and address ethical challenges in AI applications, preparing for roles in					
	sustainable resource management and geoscientific research.					
Learning	1. Lillesand, T., Kiefer, R.W. and Chipman, J., 2015. Remote sensing and image					
Resources	interpretation. John Wiley & Sons.					
	2. Longley, P.A. and Cheshire, J.A., 2017. Geographical information systems. In The					
	Routledge Handbook of Mapping and Cartography (pp. 251-258). Routledge.					
	3. Machine Learning for Geoscientists by Sebastian Hölz.					
	4. Raschka, S. and Mirjalili, V., 2019. Python machine learning: Machine learning and					
	deep learning with Python, scikit-learn, and TensorFlow 2. Packt publishing ltd.					
	5. Aurélien, G., 2017. Hands-on machine learning with scikit-learn & tensorflow. Geron					
	Aurelien, 134, pp.145-150.					
	6. Geospatial Analysis Using AI and ML by S. Shekhar et al.					

Course Code	ES6202N	Course	Hydrogeology &	Course	PC	L	Т	P	
Course Code	Name Name	Name	Exploration Geophysics	Category	PC	4	0	0	

Pre- requisite Courses	BSc with Geology/ Earth Sciences as Major in three-year UG Course	Co-requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department		Earth Sciences		Data Book / Codes/Standards	Nil

Course Objective Water crisis is a burning topic globally. The present-day society is affected by a few challenges regarding water crisis, ground water contamination, inferior quality of water, saline water intrusion etc. Students of geology should have therefore the ideas about occurrence, physical and chemical attributes of water along with the exploration of groundwater resources. In the course content main emphasis has been given on these important aspects of groundwater. Exploration geophysics deals several indirect techniques to understand the subsurface geology as well as the subsurface structures which is necessary for any kind of exploration work. Students will be acquainted with geophysical techniques, extensively to be used in exploration sector.

Module	Syllabus	Duration (class- hour)	
1	Hydrogeology ➤ Hydrologic cycle and occurrence of ground water, Porosity and permeability, Aquifer properties, Darcy's Law and groundwater movement, Specific yield, Specific retention, transmissivity, storage co-efficient or storativity, Hydraulic conductivity, Cone of Depression, Hydrologic data interpretation, and flow-net analysis.	5	To give the general ideas about the occurrences of different water resources and groundwater. The movement and availability of groundwater in different sub-surface conditions
3	 Groundwater provinces of West Bengal and India. Solution of Problems related to Hydrogeology 	2	To develop the perception on the present status of groundwater considering problems and prospects in global and Indian scenario.
4	Exploration Geophysics Seismology and the interior of the earth: elementary principles of elastic wave propagation through the earth; travel-time curves and location of earthquakes; earthquake intensity and scales; whole earth seismic velocity-depth models and crust-mantle-outer core-inner core zonation; seismic tomography.	7	Students will interpret seismic profiles to identify subsurface structures (e.g., faults, reservoirs) and quantify rock velocities

	 Earth's gravity field and gravitational acceleration; gravity anomalies and isostasy; simple isostatic compensation calculations for the Airy and Pratt models. Earth's magnetism, basic concepts of magnetic field, field components and intensity, magnetic susceptibility, magnetic anomalies; magnetization and remnant magnetization, paleomagnetism; paleomagnetic poles and polar wandering: tectonic implications; earth's magnetic field reversals, reversal time scale. Plates and plate configuration of the earth; plate motion: geometry, time scales and forces, physical basis of plate tectonics. Heat and thermal structure of the earth; oceanic and continental heat flow; the geotherm and the adiabat: implications for melting in the mantle and primary magma generation. 	20	Learners will analyze anomalies to map basement topography, igneous intrusions, and ore bodies. will assess groundwater/salinity zones and mineral deposits using resistivity tomography. And they will learn to detect conductive ore bodies/aquifers through EM induction profiling
Total		32	

Course Outcome

Students will assess groundwater resources using Darcy's law, well hydraulics, and geophysical methods (e.g., seismic, electrical surveys). They will evaluate aquifer properties, contamination risks, and artificial recharge strategies. Learners will interpret geophysical data to model subsurface structures and tectonic processes. This equips them to address water security, resource exploration, and environmental management, integrating hydrogeological and geophysical principles for sustainable development.

- 1. Ingebritsen, S.E., Sanford, W.E. and Neuzil, C.E., 2006. Groundwater in geologic processes. Cambridge University Press.
- 2. Moore, J.E., 2016. Field hydrogeology: a guide for site investigations and report preparation. CRC Press.
- 3. Todd, D.K. and Mays, L.W., 2004. Groundwater hydrology. John Wiley & Sons.
- 4. De Wiest, R.J., 1986. Diagnostic Hydrology a. Groundwater, 24(3), pp.332-341.
- 5. Groundwater Hydrology by David Keith Todd and Larry W. Mays
- 6. Fowler, C.M.R., 1990. The solid earth: an introduction to global geophysics. Cambridge University Press.
- 7. Skinner, B.J. and Porter, S.C., 1995. The blue planet: an introduction to earth system science. New York: John Wiley.
- 8. Van der Pluijm, B.A. and Marshak, S., 2004. Earth structure: an introduction to structural geology and tectonics. (No Title).
- 9. Robinson, E.S., 1988. Basic exploration geophysics.